Monolithic Linear IC
 LA6560 - For CD
 Five-Channel Driver
 (BTL : Four-Channel, H Bridge : One-Channel)

Overview

The LA6560 is a 5-channel driver (BTL : 4-channel, H bridge : 1-channel) for CD players.

Functions

- Power amplifier 5-channel built-in. (Bridge-connection (BTL) : 4-channel, H bridge : 1-channel)
- IO max 1A
- Level shift circuit built-in (except H bridge).
- Mute circuit (output ON/OFF) built-in.
(Operable with BTL AMP and not operable for the H bridge of 5VREG)
- 5V regulator built-in (external PNP transistor).
- With VREF changeover function (H : external, L : internal (2.5V) selected)
- Overheat protection circuit (thermal shutdown) built-in.

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	$\mathrm{V}_{\text {CC }}$ max		14	V
Allowable power dissipation	Pd max	Independent IC	2.0	W
		Mounted on specified board. *	0.8	W
Maximum output current	IO max	Each output for H bridge, channel 1 to 4.	1	A
Maximum input voltage	$\mathrm{V}_{\text {IN }}{ }^{\text {B }}$		13	V
MUTE pin voltage	VMUTE		13	V
Operating temperature	Topr		-30 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

* Specified board size : $76.1 \times 114.3 \times 1.6 \mathrm{~mm}^{3}$, glass epoxy.

Recommended Operating Conditions at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V_{CC}		5.6 to 13	V

Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications.
■ SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein.

LA6560

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}} 1=\mathrm{V}_{\mathrm{CC}}{ }^{2}=8 \mathrm{~V}$, VREF $=2.5 \mathrm{~V}$, unless especially specified.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
ALL Blocks						
No-load current drain ON	${ }^{\text {I CCO }}$ -	BTL-AMP output ON, LOADING block OFF *1		30	50	mA
No-load current drain OFF	ICC-OFF	All outputs OFF *1		10	15	mA
Thermal shutdown temperature	TSD	Design guarantee value	150	175	200	${ }^{\circ} \mathrm{C}$
VREF AMP						
VREF-AMP offset voltage	VREF-OFFSET		-10		10	mV
VREF Input voltage range	VREF-IN		1		$\mathrm{V}_{\text {CC }}{ }^{-1.5}$	V
VREF-OUT output current	I-VREF-OUT	CH 1 input reference voltage	2	5	6.6	mA
BTL AMP Block (CH 1 to CH 4)						
Output offset voltage	$\mathrm{V}_{\text {OFF }}$	Voltage difference between outputs for BTL AMP, each channel. *2	-50		50	mV
Input voltage range	V_{IN}	Input voltage range for input for OP-AMP.	0		$\mathrm{V}_{\mathrm{CC}}-1.5$	mA
Output voltage	V_{O}	Each voltage between $\mathrm{V}_{0}+$ and V_{0} - when $R_{L}=8 \Omega$. *3	5.7	6.2		V
Closed-circuit voltage gain	VG	Input and output gain. Input OP-AMP:BUFFER	3.6	4	4.4	Times
Slew rate	SR	AMP Independent Multiply 2 between outputs.		0.5		$\mathrm{V} / \mathrm{\mu s}$
MUTE ON voltage	VMUTE-ON	Output ON voltage, each MUTE *4	2			V
MUTE OFF voltage	VMUTE-OFF	Output OFF voltage, each MUTE *4			0.5	V
Input AMP Block (CH1 to 4)						
Input voltage range	$\mathrm{V}_{\text {IN }}$-OP		0		$\mathrm{V}_{\mathrm{CC}}{ }^{-1.5}$	V
Output current (SINK)	SINK-OP		2			mA
Output current (SOURCE)	SOURCE-OP	*5	300	500		$\mu \mathrm{A}$
Output offset voltage	$\mathrm{V}_{\text {OFF-OP }}$		-10		10	mV
CH 1 input changeover voltage 1	VSW-OP1	CH1 input AMP(B), external REF select *6	2			V
CH 1 input changeover voltage 2	VSW-OP2	CH 1 input AMP(A), internal VREF select *6			0.5	V
Loading Block (CH5, H bridge)						
Output voltage	V_{O}-LOAD	At forward and reverse rotation, $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{VCONT}=\mathrm{V}_{\mathrm{CC}}$ *3	5.7	6.5		V
Break output saturation voltage	$\mathrm{V}_{\text {CE }}$-BREAK	Output voltage at braking *7			0.3	V
Input low level	$\mathrm{V}_{\text {IN }}$-L				1	V
Input high level	$\mathrm{V}_{\text {IN }}{ }^{-\mathrm{H}}$		2			V
Power Supply Block (PNP transistor : 2SB632K-use)						
5 V supply voltage	$V_{\text {OUT }}$	$\mathrm{I}^{\prime}=200 \mathrm{~mA}$	4.8	5.0	5.2	V
REG-IN SINK current	REG-IN-SINK	Base current of external PNP *8	5	10		mA
Line regulation	$\Delta \mathrm{V}_{\mathrm{O}} \mathrm{LN}$	$6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 12 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=200 \mathrm{~mA}$		10	100	mV
Load regulation	$\Delta \mathrm{V}_{\mathrm{O}} \mathrm{LD}$	$5 \mathrm{~mA} \leq \mathrm{I}_{\mathrm{O}} \leq 200 \mathrm{~mA}$		10	100	mV

Note *1: Current dissipation that is a sum of $\mathrm{V}_{\mathrm{CC}} 1$ and $\mathrm{V}_{\mathrm{CC}} 2$ at no load.
*2 : Input AMP is a BUFFER AMP.
*3 : Voltage difference between both ends of load (8Ω). Output saturated.
*4 : Output ON with MUTE : [H] and OFF with MUTE : [L] (HI impedance).
*5 : The source of input OP-AMP is a constant current. As the $11 \mathrm{k} \Omega$ resistance to the next stage is a load, pay due attention when setting the input OP-AMP gain.
*6 : With $\mathrm{V}_{\text {IN }} 1-\mathrm{SW}:[\mathrm{L}]$, the input AMP selects AMP-A while VREF selects internal VREF $(\approx 2.5 \mathrm{~V})$. With $\mathrm{V}_{\text {IN }} 1-\mathrm{SW}:[\mathrm{H}]$, the input AMP selects AMP-B while VREF selects external VREF (\approx VREF-IN).
*7 : Short (GND) brake used. SINK side output ON.
*8 : 5VREG incorporates a drooping protection circuit and operated when the base current is 10 mA (TYP).

Package Dimensions

unit : mm (typ)
3251

Block Diagram

LA6560
Pin Functions

Pin No.	Symbol	Pin descriptions
1	FWD	Output change pin (FWD) for 5CH (VLO), logic input for loading block.
2	REV	Output change pin (REV) for 5CH (VLO), logic input for loading block.
3	$\mathrm{V}_{\mathrm{CC}}{ }^{2}$	Power supply for CH3, 4, and 5.
4	VLO-	Loading output (-)
5	VLO+	Loading output (+)
6	$\mathrm{V}_{\mathrm{O}^{4+}}$	Output pin (+) for channel 4
7	$\mathrm{V}_{\mathrm{O}}{ }^{4-}$	Output pin (-) for channel 4
8	$\mathrm{V}_{\mathrm{O}^{3+}}$	Output pin (+) for channel 3
9	$\mathrm{V}_{\mathrm{O}} 3-$	Output pin (-) for channel 3
10	$\mathrm{V}_{\mathrm{O}}{ }^{+}$	Output pin (+) for channel 2
11	$\mathrm{V}_{\mathrm{O}}{ }^{-}$	Output pin (-) for channel 2
12	$\mathrm{V}_{\mathrm{O}}{ }^{+}$	Output pin (+) for channel 1
13	$\mathrm{V}_{\mathrm{O}} 1-$	Output pin (-) for channel 1
14	$\mathrm{V}_{\mathrm{CC}}{ }^{1}$	Power supply for CH1, 2 (BTL).
15	$\mathrm{V}_{\text {IN }} 1$	Input pin for channel 1
16	$\mathrm{V}_{\text {IN }} 1-\mathrm{A}$	OP-AMP input AMP-A input pin (-)
17	$\mathrm{V}_{1 \mathrm{~N}^{1+}}$	OP-AMP input AMP-A input pin (+)
18	$\mathrm{V}_{\text {IN }} 1$ - ${ }^{\text {d }}$	Input AMP-B input pin (-) for channel 1
19	$\mathrm{V}_{1 \mathrm{~N}^{1+B}}$	Input AMP-B input pin (+) for channel 1
20	$\mathrm{V}_{\text {IN }}{ }^{2}$	Input pin for channel 2, input AMP output
21	$\mathrm{V}_{\text {IN }}{ }^{2-}$	Input pin (-) for channel 2
22	$\mathrm{V}_{\mathrm{IN}}{ }^{+}$	Input pin (+) for channel 2
23	$\mathrm{V}_{\text {IN }}{ }^{\text {I }}$	Input pin for channel 3, input AMP output
24	$\mathrm{V}_{1 \mathrm{IN}^{3-}}$	Input pin (-) for channel 3
25	$\mathrm{V}_{1 \mathrm{~N}^{3+}}$	Input pin (+) for channel 3
26	REG-IN	PNP transistor base connected
27	REG-OUT	5 V power output to which the PNP transistor collector connected.
28	VREF-OUT	CH1 reference voltage output. Outputs internal VREF (2.5V : TYP) or external VREF.
29	$\mathrm{V}_{\text {IN }} 1$ (VREF) -SW	Pin for changeover between input AMP-A/internal VREF (TYP2.5V) and input AMP-B/ external VREF.
30	VREF-IN	Reference voltage applied pin
31	$\mathrm{V}_{1 \mathrm{~N}^{4+}}$	Input pin (+) for channel 4
32	$\mathrm{V}_{\text {IN }} 4$ -	Input pin (-) for channel 4
33	$\mathrm{V}_{\text {IN }} 4$	Input pin for channel 4, input AMP output
34	MUTE	All BTL AMP output ON/OFF
35	VCONT	LOADING output voltage setting
36	S-GND	Signal system GND

Note : Center frame (FR) becomes GND for the power system (P-GND). Set this to the minimum potential together with S-GND.

Pin Description

Pin No.	Symbol	Pin function	Description	Equivalent circuit
$\begin{aligned} & 17 \\ & 19 \\ & 16 \\ & 18 \\ & 15 \\ & 22 \\ & 21 \\ & 20 \\ & 25 \\ & 24 \\ & 23 \\ & 32 \\ & 31 \\ & 33 \end{aligned}$	$V_{I N^{1+A}}$ $V_{I N^{1+B}}$ $V_{I N^{1-A}}$ $V_{I N^{1-B}}$ $V_{I N^{1}}$ $V_{I N^{2+}}$ $V_{I N^{2-}}$ $V_{I N^{2}}$ $V_{I N^{3+}}$ $V_{I N^{3-}}$ $V_{I N^{3}}$ $V_{I N^{4-}}$ $V_{I N^{4+}}$ $V_{I N^{4}}$	Input (CH1 to 4)	Input pin (CH1 to 4)	
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { FWD } \\ & \text { REV } \end{aligned}$	Input (H bridge)	Logic input pin. By combining H and L of this pin, any one of four modes (forward/ reversed/brake/idling) can be selected.	
$\begin{gathered} 12 \\ 13 \\ 10 \\ 11 \\ 8 \\ 9 \\ 6 \\ 7 \end{gathered}$	$\mathrm{V}_{\mathrm{O}}{ }^{1+}$ $\mathrm{V}_{\mathrm{O}} 1-$ $\mathrm{V}_{\mathrm{O}}{ }^{2+}$ $\mathrm{V}_{\mathrm{O}}{ }^{2-}$ $\mathrm{V}_{\mathrm{O}}{ }^{3+}$ $\mathrm{V}_{\mathrm{O}}{ }^{3-}$ $\mathrm{V}_{\mathrm{O}}{ }^{4+}$ $\mathrm{V}_{\mathrm{O}} 4-$	Output (BTL-AMP)	Output for channel 1 to 4 .	
4 5 35	VLO- VLO+ VCONT	Output (H bridge)	H bridge (LOADING) output and LOADING output setting pin	
34	MUTE	MUTE	BTL AMP output, which turns ON/OFF the output, MUTE : H Output OFF MUTE : L Output OFF	

Truth Table (loading (H bridge) section)

FWD	REV	VLO+	VLO-	Loading output
L	L	OFF	OFF	OFF *1
	H	H	L	Forward
H	L	L	H	Reversed
	H	L	L	(Short) brake *2

*1 The output has a high impedance.
*2 At brake, the SINK side transistor is ON (short brake).
VLO+ and VLO- are approximately on the GND level.

Relation of MUTE and Power (Vcc*)

VIN1 (VREF)-SW (CH1 input AMP selection and internal/external VREF selection function)
(Relation between input AMP (CH1 only) and VREF)

$\mathrm{V}_{\text {IN }} 1_{-} \mathrm{SW}$	Input AMP $(\mathrm{CH} 1)$ state	VREF state
H	$\mathrm{V}_{\text {IN }} 1-\mathrm{A}(\mathrm{AMP-A})$	Internal VREF $(2.5 \mathrm{~V}:$ TYP)
L	$\mathrm{V}_{\text {IN }} 1-\mathrm{B}(\mathrm{AMP}-\mathrm{B})$	External VREF

On MUTE

MUTE	BTLAMP output	VREF-OUT
L	OFF	
H	ON	

VREF-OUT operates in an interlock with MUTE.

Sample Application Circuit

\square Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
$■$ SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor products (including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of December, 2006. Specifications and information herein are subject to change without notice.

