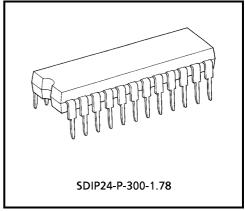
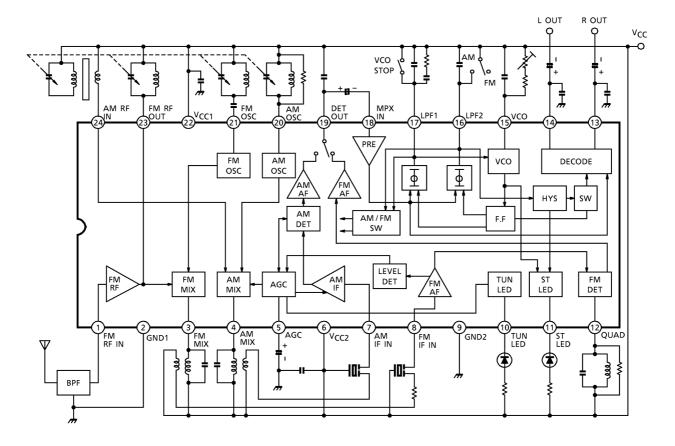
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic


TA8167N

3V AM / FM 1 CHP Tuner IC

TA8167N is the AM / FM 1 chip tuner IC, which is designed for portable radios and 3V headphone radios.

Features


- Built-in
 FM F / E, AM / FM IF and FM MPX
- AM detector coil and IF coupling condenser are not needed.
- $\bullet~$ S curve characteristics of FM detection output is reverse characteristic.
- The FM local oscillation voltage is set up low relatively for measures against FM radiation.
- Operating supply voltage range $V_{CC} = 1.8 \sim 7.0 V (Ta = 25 °C)$

Weight: 1.2g (typ.)

1

Block Diagram

2 2002-10-30

Explanation Of Terminals

Pin No.	Symbol	Internal Circuit	(at no	tage (V) signal)
1	FM-RF IN	FM-RF OUT 23	AM 0	FM 0.7
2	GND1 (GND for RF stage)	_	0	0
3	FM MIX	V _{CC1} ②	3.0	3.0
4	AM MIX	Vcc1 (22) MIX GND1 (2)	3.0	3.0
5	AGC (AM AGC)	GC (AM AGC) IF AGC S RF AGC GND2 9		
6	V _{CC2} (V _{CC} for IF / MPX stage)		3.0	3.0
7	AM IF IN	VCC2 6 C3 X M T T T T T T T T T T T T T T T T T T	3.0	3.0
8	FM IF IN	VCC2 6 COMMENT OF THE PARTY OF	3.0	3.0

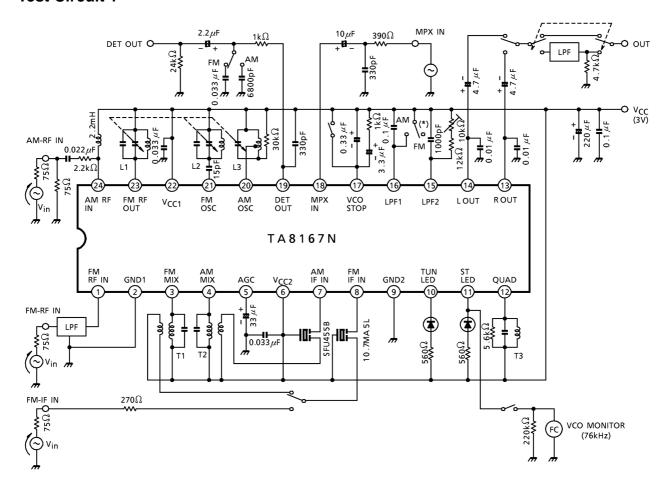
Pin No.	Symbol	Internal Circuit	DC Vol (at no AM	tage (V) signal) FM
9	GND2 (GND for IF / MPX stage)	_	0	0
10	Tun LED (tuning LED)	V _{CC2} (6) (10) (10) (10) (10) (10) (10) (10) (10	-	_
11	ST LED (stereo LED)	76kHz 11 GND2 9	I	_
12	QUAD (FM QUAD, detector)	V _{CC2} 6	3.0	3.0
13 14	R-OUT (R-ch output) L-OUT (L-ch output)	VCC2 6 C C C C C C C C C C C C C C C C C	1.0	1.0
15	VCO	VCC2 6 DC AMP 15 GND2 9	2.5	2.5 (VCO stop mode)
16	LPF2 • LPF terminal for synchronous detector • Bias terminal for AM / FM SW circuit V ₁₆ = V _{CC} → AM (VCO stop) V ₁₆ = OPEN → FM	GND2 9	3.0	2.2 (VCO stop mode 2.7)
17	LPF1 • LPF terminal for phase detector • VCO stop terminal V ₁₇ = V _{CC} → VCO stop	GND2 9	2.7	2.2

Pin No.	Symbol	Internal Circuit	DC Vol (at no AM	tage (V) signal) FM
18	MPX IN	18 W W W W W W W W W W W W W W W W W W W	0.7	0.7
19	DET OUT	VCC2 6 AM O FM O B B COW-FM, HIGH-AM B LOW-AM, HIGH-FM	1.5	1.2
20	AM OSC	V _{CC1} (2) MIX GND1 (2)	3.0	3.0
21	FM OSC	V _{CC1} 22 21 MIX — II	3.0	3.0
22	V _{CCL} (V _{CC} for RF stage)	_	3.0	3.0
23	FM RF OUT	Cf. pin(1)	3.0	3.0
24	AM RF IN	V _{CC1} (2)	3.0	3.0

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CC}	8	V
LED current	I _{LED}	10	mA
LED voltage	V_{LED}	8	V
Power dissipation	P _D (Note)	1200	mW
Operating temperature	T _{opr}	-25~75	°C
Storage temperature	T _{stg}	−55~150	°C

(Note) Derated above Ta = 25° C in the proportion of 9.6mW / $^{\circ}$ C.

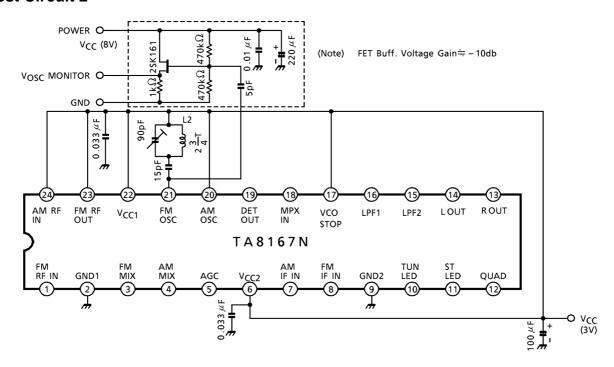

Electrical Characteristics

Unless Otherwise Specified, Ta = 25°C, V_{CC} = 3V, F / E: f = 83MHz, f_m = 1kHz FM IF: f = 10.7MHz, Δf = ±22.5kHz, f_m = 1kHz AM: f = 1MHz, MOD = 30%, f_m = 1kHz MPX: f_m = 1kHz

	Characteristic	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit	
Suppl	ply current ICC (FM)		1	V _{in} = 0, FM mode		13.2	20.0	mA	
Suppi	y current	I _{CC} (AM)	1	V _{in} = 0, AM mode	_	8.4	13.5		
F/E	Input limiting voltage	V _{in (lim)}	1	-3dB limiting	_	10.0	_	dBµV EMF	
	Local OSC voltage	Vosc	2	f _{OSC} = 72.3MHz	_	70	_	mV _{rms}	
	Input limiting voltage	V _{in (lim)} IF	1	-3dB limiting	40	46	53	dBµV EMF	
	Recovered output voltage	V _{OD}	1	V _{in} = 80dBμV EMF	55	80	110	mV _{rms}	
FM IF	Signal to noise ratio	S/N	1	V _{in} = 80dBμV EMF	_	70	_	dB	
"	Total harmonic distortion	THD	1	V _{in} = 80dBμV EMF	_	0.4	_	%	
	AM rejection ratio	AMR	1	V _{in} = 80dBμV EMF	_	32	_	dB	
	Lamp on sensitivity	VL	1	I _L = 1mA	45	51	56	dBµV EMF	
	Gain	G _V	1	V _{in} = 26dBµV EMF	40	70	110	mV _{rms}	
	Recovered output voltage	V _{OD}	1	V _{in} = 60dBμV EMF	55	80	110	mV _{rms}	
AM	Signal to noise ratio	S/N	1	V _{in} = 60dBμV EMF	_	42	_	dB	
	Total harmonic distortion	THD	1	V _{in} = 60dBμV EMF	_	1.0	_	%	
	Lamp on sensitivity	VL	1	I _L = 1mA	20	25	30	dBµV EMF	
Din/10	9) output resistance	R ₁₉		FM mode	_	0.75	_	kΩ	
1-111(13	o output resistance	N19		AM mode	_	12.5		K77	

	Characteristic		Symbol	Test Cir– cuit	Test Condition		Min.	Тур.	Max.	Unit
	Input resistance		R _{IN}	_	_	_		24	_	kΩ
	Output resist	ance	R _{OUT}	_	_	_		5	_	kΩ
	Max. Composite signal input voltage		V _{in max} (stereo)	1	L + R = 90%, P = 10%, f _m = 1kHz, THD = 3%		-	350	_	mV _{rms}
	Separation				L+R	f _m = 100Hz	_	42	_	
			Sep	1 = 135m	= 135mV _{rms}	f _m = 1kHz	35	42	_	dB - %
					P = 15mV _{rms}	f _m = 10kHz	_	42	_	
	Total harmonic distortion	Monaural	THD (monaural)	1	V _{in} = 150mV _{rms}	-	0.2	_		
MPX		Stereo	THD (stereo)	'	L + R = $135\text{mV}_{\text{rms}}$, P = 15mV_{rms}		-	0.2	_	
	Voltage gain		G _V (MPX)	1	V _{in} = 150mV _{rms}		-5	-3	-1	dB
	Channel balance		C.B.	1	V _{in} = 150mV _{rms}		-2	0	2	dB
	Stereo lamp	ON	V _{L (ON)}	1	Pilot input		_	8	16	m\/
	sensitivity	OFF	V _{L (OFF)}	'			2	6	_	mV _{rms}
	Stereo lamp hysteresis		V _H	1	To LED turn off from LED turn on		_	2	_	mV _{rms}
	Capture range		C.R.	1	P = 15mV _{rms}		_	±3	_	%
	Signal to noise ratio		S/N	1	_		_	70	_	dB

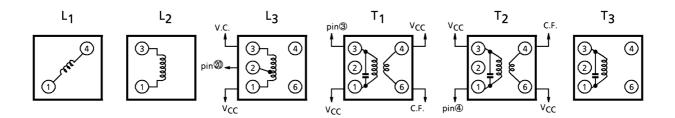
Test Circuit 1



(*) Polyester film condenser

Using other types of condensers, there are some cases that the MPX dose not do normal stereo action at high temperature or low temperature.

8


Test Circuit 2

Coil Data

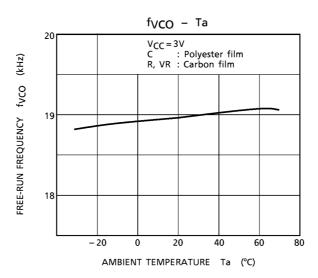
	Test		Co	_			Turns			Wire	
Coil No.	Freq. (Hz)	(µH)	(pF)	Qo	1–2	2–3	1–3	1–4	4–6	(mmφ)	Reference
L ₁ FM RF	100M	_	_	100	_	_	_	$2\frac{1}{2}$	_	0.5 UEW	(S) 53T-037-202
L ₂ FM OSC	100M	_	_	100	_	_	$2\frac{3}{4}$	_	_	0.5 UEW	(S) 0258-244
L ₃ AM OSC	796k	288	_	115	13	73	_	_	_	0.08 UEW	(S) 4147-1356-038
T ₁ FM mix	10.7M	_	75	100	_	_	13	_	2	0.1 UEW	(S) 2153-414-041
T ₂ AM mix	455k	_	180	120	_	_	180	_	15	0.08 UEW	(S) 2150-2162-165
T ₃ FM DET	10.7M	_	47	165	_	_	16	_	_	0.09 UEW	(S) 2153-4095-122

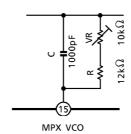
(S): SUMIDA ELECTRIC CO., LTD.

9

2002-10-30

Hint On Use Of TA8167N

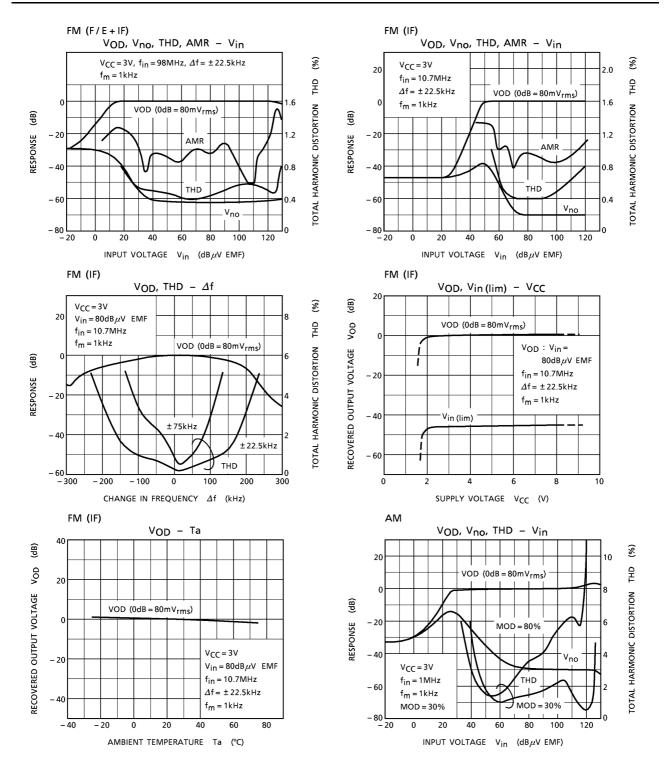

OExternal parts of MPX VCO

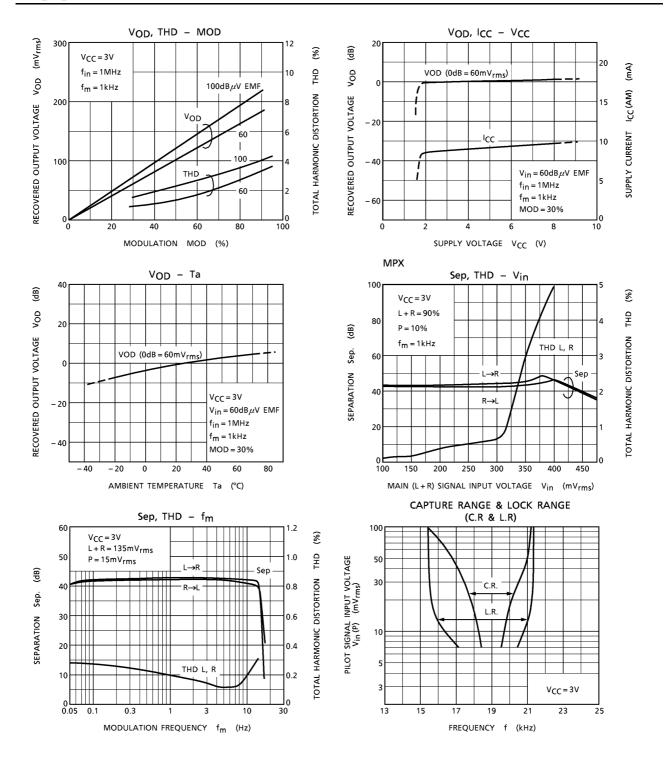

(1) Temperature characteristic of MPX VCO free–run frequency.

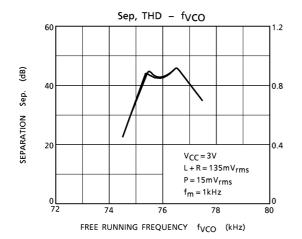
The temperature characteristic of MPX VCO is shown in the diagram as below.

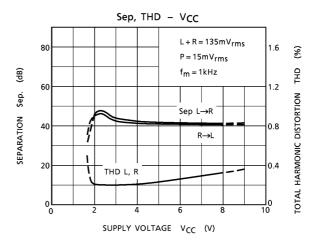
Select one with a better temperature characteristic (C, R and VR.) in use. We recommend,

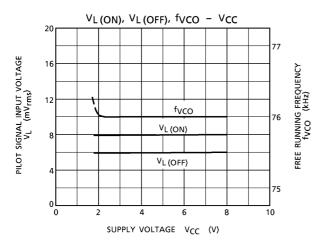
C : Polyester film R, VR: Carbon film

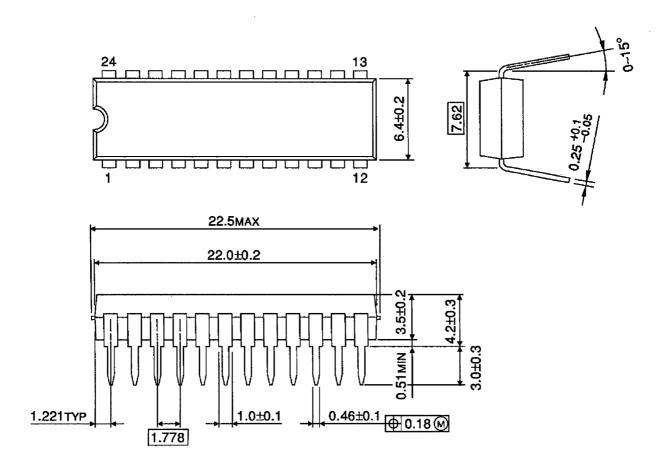

(2) Value of the external parts


We recommend to set up these value as below.


C = 1000pF


 $R = 12k\Omega$


 $VR = 10k\Omega$



13 2002-10-30

Package Dimensions

SDIP24-P-300-1.78

Unit: mm

Weight: 1.2g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.