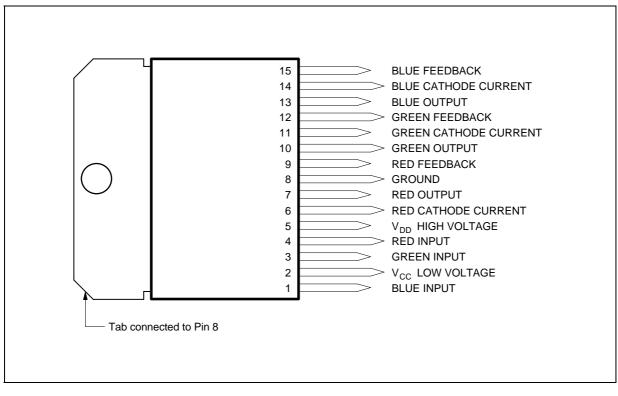


STV5112

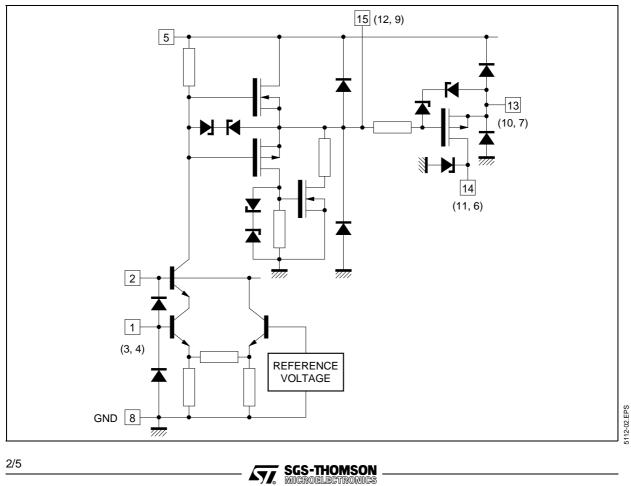
RGB HIGH VOLTAGE VIDEO AMPLIFIER


- BANDWIDTH : 8MHz TYPICAL
- SUPPLY VOLTAGE : 220V TYPICAL
- RISE AND FALL TIME : 50ns TYPICAL
- CRT CATHODE CURRENT OUTPUTS FOR PARALLEL OR SEQUENTIAL CUT-OFF OR DRIVE ADJUSTMENT
- FLASHOVER PROTECTION
- POWER DISSIPATION : 3.6W

DESCRIPTION

The STV5112 includes three video amplifiers designed with a high voltage bipolar/CMOS/DMOS technology (BCD). It drives directly the three cathodes and is protected against flashovers. Thanks to its three cathode current outputs, the STV5112 can be used with both parallel and sequential sampling applications.

PIN CONNECTIONS (top view)



5112-01.EPS

PIN FUNCTION

N٥	Function	Description			
1	Blue Input	Input of the "blue" amplifier. It is a virtual ground with 2.5V bias voltage and 75µA inpubias current.			
2	Vcc	Low voltage power supply, typically 9V.			
3	Green Input	Input of the "green" amplifier. It is a virtual ground with 2.5V bias voltage and 75µA inpubias current.			
4	Red Input	Input of the "red" amplifier. It is a virtual ground with 2.5V bias voltage and 75 $\!\mu\text{A}$ input bias current.			
5	V _{DD}	High voltage power supply, typically 220V.			
6	Red Cathode Current	Provides the video processor with a copy of the DC current flowing into the red cathode, for automatic cut-off or gain adjustment. If this control is not used, Pin 6 must be grounded.			
7	Red Output	Output driving the red cathode. Pin 7 is internally protected against CRT arc discharges by a diode limiting the output voltage to V _{DD} .			
8	Ground	Also connected to the heatsink.			
9	Red Feedback	Output driving the feedback resistor network for the red amplifier.			
10	Green Output	Output driving the green cathode. Pin 10 is internally protected against CRT arc discharges by a diode limiting the output voltage to V_{DD} .			
11	Green Cathode Current	Provides the video processor with a copy of the DC current flowing into the green cathode, for automatic cut-off or gain adjustment. If this control is not used, Pin 11 must be grounded.			
12	Green Feedback	Output driving the feedback resistor network for the green amplifier.			
13	Blue Output	Output driving the blue cathode. Pin 13 is internally protected against CRT arc discharges by a diode limiting the output voltage to V_{DD} .			
14	Blue Cathode Current	Provides the video processor with a copy of the DC current flowing into the blue cathode, for automatic cut-off or gain adjustment. If this control is not used, Pin 14 must be grounded.			
15	Blue Feedback	Output driving the feedback resistor network for the blue amplifier.			

BLOCK DIAGRAM OF EACH CHANNEL

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit		
V _{DD}	Supply High Voltage	Pin 5	250	V	
V _{CC}	Supply Low Voltage	Pin 2	20	V	
I _{OD} Iog	Output Current to V _{DD} to Ground	Pins 7 - 10 - 13	Protected 8	mA	
I _{FD} I _{FG}	Output Current < 50μ s duration to V _{DD} to Ground	Pins 9 - 12 - 15	45 45	mA mA	
lj	Input Current	Pins 1 - 3 - 4	60	mA	
Tj	Junction Temperature		150	°C	
T _{oper}	Operating Ambient Temperature		0, + 70	°C	
T _{stg}	Storage Temperature		- 20, + 150	°C	

THERMAL DATA

Symbol	Parameter	Value	Unit	
R _{th} (j-c)	Junction-Case Thermal Resistance Max.	3	°C/W	03.TBI
R _{th} (j-a)	Junction-Ambient Thermal Resistance Typ.	35	°C/W	5112-

ELECTRICAL CHARACTERISTICS

 V_{CC} = 9V ; V_{DD} = 240V ; T_{amb} = 25 $^o\!C$; AV = 55 (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	High Supply Voltage (Pin5)			220	240	V
Vcc	Low Supply Voltage (Pin 2)		7.5	9	10	V
I _{DD}	High Voltage Supply Internal DC Current (without current due to the feedback network)	V _{OUT} = 120V		9.5	15	mA
lcc	Low Voltage Supply Internal DC Current			38	55	mA
V _{sath}	Output Saturation Voltage (High level) (Pins 7-10-13)	I _O = - 10μA		5		V
R _{ON}	Output Mos Transistor (Low level) (Pins 7-10-13)			1.7		kΩ
BW	Bandwidth at - 3dB	$\begin{array}{l} \mbox{Measured on CRT cathodes.} \\ (C_{LOAD} = 10 \mbox{PF}, \mbox{R}_{PROTECT} = 1 \mbox{k}\Omega, \\ V_{OUT} = 120 \mbox{V}, \Delta \mbox{ V}_{OUT} = 100 \mbox{V}_{PP}) \end{array}$		8		MHz
t _R , t _F	Rise & Fall Time	$\begin{array}{l} \mbox{Measured between 10\% \& 90\%} \\ \mbox{of output pulse} \\ \mbox{(C}_{LOAD} = 10 \mbox{PF}, \mbox{R}_{PROTECT} = 1 \mbox{k}\Omega, \\ \mbox{V}_{OUT} = 120 \mbox{V}, \Delta \mbox{V}_{OUT} = 100 \mbox{V}_{PP} \end{array}$		50		ns
Go	Open Loop Gain		47	50		dB
	Open Loop Gain Difference between 2 channels		-1.5	0	1.5	dB
	Open Loop Gain Temperature Coefficient			0		dB/ºC
Р	Internal Power Dissipation (see calculation below)	$\label{eq:VOUT} \begin{array}{l} V_{OUT} = 2MHz, \ 70V_{PP} \ sine \ wave, \\ V_{BLACK} = 170V, \ C_L = 20pF, \\ R_F = 68k\Omega \end{array}$		3.6		W
V_{REF}	Internal Voltage Reference (Pins 1-3-4)	V _{OUT} = 120V	2.3	2.5	2.7	V
	Voltage Reference Temperature Coefficient			0		mV/°C
I _{IB}	Input Bias Current (Pins 1-3-4)	V _{OUT} = 120V		75		μΑ
RI	Input Resistance			4		kΩ
ESD	ESD Human Body Model		1.2			kV

TYPICAL APPLICATION

The STV5112 is composed of three independent amplifiers, each of them including :

- A differential amplifier, the gain of which is fixed by external feedback resistors,
- A voltage reference,
- APMOS transistor providing a copy of the cathode current.
- A protection diode against CRT arc discharges.

PC Board Layout

The best performances of the high voltage video amplifier will be obtained only with a carefully designed PC board. Output to input capacitance is of particular importance.

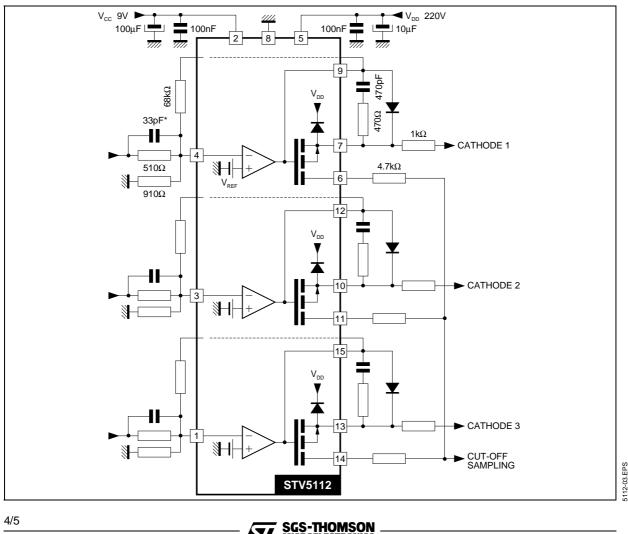
For a single amplifier, the input-output capacitance, in parallel with the relatively high feedback resis-tance, creates a pole in the closed-loop transfer function.

A low parasitic capacitance (0.3pF) feedback resistor and HF isolated printed wires are necessary.

Figure 1 : Application Example

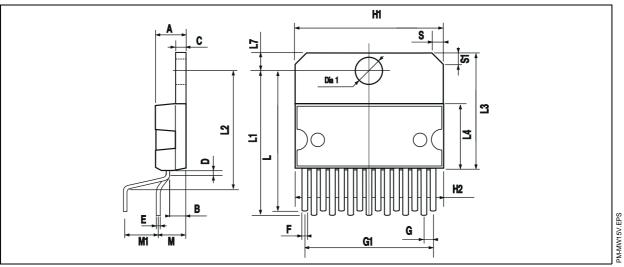
Furthermore, capacitive coupling from the output of an amplifier toward the input of another one may induce excessive cross-talk.

Power Dissipation


The power dissipation consists of a static part and a dynamic part. The static dissipation is a function of V_{OUT(DC)}, V_{DD} and R_F. Reasonable approximation of the static power can be calculated by the following equation.

$$P_{S} = \frac{3V_{DD} (V_{DD} - V_{OUT})}{40k} + \frac{3V_{OUT} (V_{DD} - V_{OUT})}{R_{F}}$$

The dynamic dissipation depends on the signal spectrum, VOUT, VDD and the load capacitance. - For a sine wave, dynamic dissipation is


 $P_d = 3 \times F \times C_L \times V_{OPP} \times 0.8 \times V_{DD}$.

The load capacitance CL includes CRT and board capacitance (10pF), and amplifier output capacitance (8pF) : total CL value is about 20pF.

^۲/

PACKAGE MECHANICAL DATA: 15 PINS - PLASTIC MULTIWATT

Dimensions	Millimeters			Inches			
Dimensions	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
E	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.14	1.27	1.4	0.045	0.050	0.055	
G1	17.57	17.78	17.91	0.692	0.700	0.705	
H1	19.6			0.772			
H2			20.2			0.795	
L	22.1		22.6	0.870		0.890	
L1	22		22.5	0.866		0.886	
L2	17.65		18.1	0.695		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.20	4.30	4.60	0.170	0.169	0.181	
M1	4.50	5.08	5.30	0.177	0.200	0.209	
S	1.90		2.60	0.075		0.102	
S1	1.90		2.60	0.075		0.102	
Dia. 1	3.65		3.85	0.144		0.152	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1998 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips I²C Patent. Rights to use these components in a I²C system, is granted provided that the system conforms to the I²C Standard Specifications as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

