DUAL LOW VOLTAGE POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2073 is a monolithic integrated circuit in 8 lead dual-inline package, which is designed for dual audio power amplifier in portable radio and handy cassette player.

■ FEATURES

• Operating Voltage

 $V^+=1.8 \sim 15V$

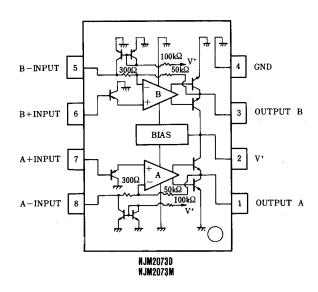
- Low Crossover Distortion
- Low Operating Current
- Bridge or Stereo Configuration
- No Turn-on Noise

• Package Outline

DIP8, DMP8

• Bipolar Technology

■ PACKAGE OUTLINE



NJM 2073 D

NJM 2073 M

■ PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	.15	v
Output Peak Current	IOP	1	A
Power Dissipation	PD	(DIP8) 700	
		(DMP8) 300	mW
Input Voltage Range	V _{IN}	±0.4	v
Operating Temperature Range	Topr	-40∼+85	r
Storage Temperature Range	T _{stg}	-40~+125	r

■ ELECTRICAL CHARACTERISTICS

(1) BTL Configuration (Test Circuit Fig. 1)

 $(V^+=6V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8	_	15	v
Operating Current	Icc	$R_L = \infty$	<u> </u>	6	9	mA
Output Offset Voltage	ΔV_{O}	$R_L = 8\Omega$	l —	10	50	mV
(Between the Outputs)						
Input Bias Current	IB		_	100	_	nA
Output Power		THD= 10% , f= 1 kHz		ļ		
	Po	$V^+=9V$, $R_L=16\Omega$ (Note)	<u> </u>	2.0		W
	Po	$V^+=6V$, $R_L=8\Omega$ (Note)	0.9	1.2	_	W
	Po	$V^{+}=4.5V, R_{L}=8\Omega$		0.6	_	W
	Po	$V^{+}=4.5V$, $R_L=4\Omega$ (Note)	—	0.8		W
	Po	$V^{+}=3V$, $R_L=4\Omega$	200	300	<u> </u>	mW
	Po	$V^{+}=2V$, $R_L=4\Omega$	—	80	—	mW
		THD=1%, f=40kHz~15kHz				
	Po	$V^{+}=6V, R_L=8\Omega$	—	1.0	_	W
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	_	0.6	_	w
Total Harmonic Distortion	THD	$P_0 = 0.5W$; $R_L = 8\Omega$, $f = 1kHz$	_	0.2		%
Close Loop Voltage Gain	Av	f=1kHz	41	44	47	dB
Input Impedance	Z _{IN}	f=1kHz	100	_		kΩ
Equivalent Input Noise Voltage	V _{NI} 1	$R_S = 10k\Omega$, A Curve		2	—	μV
	V _{NI} 2	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$	_	2.5		μV
Ripple Rejection	RR	f=100Hz	l —	40	_	dB
Cutoff Frequency	f _H	$A_V = -3dB$ from $f = 1kHz$, $R_L = 8\Omega$, $P_0 = 1W$	_	130	-	kHz

(Note) At on PC Board

(2) Stereo Configuration (Test Circuit Fig. 2)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8	_	15	v
Output Voltage	V _O	•	_	2.7	—	ν
Operating Current	lcc	$R_L = \infty$		6	9	mA
Input Bias Current	1 _B		-	100	-	nA
Output Power (Each Channel)		THD=10%, f=1kHz				
	Po	$V^{+}=6V$, $R_L=4\Omega$ (Note)	0.5	0.65		W
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	i —	0.32		W
	Po	$V^{+}=3V$, $R_L=4\Omega$	-	120	.—	mW
·	Po	$V^{+}=2V$, $R_L=4\Omega$	-	30	-	mW
		THD=1%, f=1kHz			1	
	Po	$V^{+}=6V$, $R_L=4\Omega$	-	500	—	mW
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	-	250		mW
Total Harmonic Distortion	THD	$P_0 = 0.4W$, $R_L = 4\Omega$, $f = 1kHz$	_	0.25	-	%
Voltage Gain	Av	f=IkHz	41	44	47	dB
Channel Balance	ΔAv		-	-	±1	dB
Input Impedance	Z _{IN}	ſ=1kHz	100.	-	-	kΩ
Equivalent Input Noise Voltage	V _{NI} 1	$R_S = 10k\Omega$, A Curve	-	2.5	-	μV
	V _{NI} 2	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$	-	3	-	μV
Ripple Rejection	RR	$f = 100 \text{Hz}, C_X = 100 \mu \text{F}$	24	30	-	dB
Cutoff Frequency	fH	$A_V = -3dB$ from $f = 1kHz$	-	200		kHz
		$R_L = 8\Omega$, $P_O = 250$ mW				

(Note) At on PC Board

■ ELECTRICAL CHARACTERISTICS M-Type

(1) BTL Configuration (Test Circuit Fig. 1)

(V⁺=6V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8	_	15	v
Operating Current	I _{CC} .	R _L =∞		6	9 -	mA
Output Offset Voltage (Between the Outputs)	$\Delta V_{\rm O}$	$R_L=8\Omega$	_	10	50	mV
Input Bias Current	I _B			100	_	nΑ
Output Power		THD=10%, f=1kHz				
•	Po	$V^+=6V$, $R_L=16\Omega$ (Note)	_	0.8		w
	Po	$V^{+}=4V, R_{L}=8\Omega \text{ (Note)}$	350	460	_	mW
	Po	$V^{+}=3V$, $R_{L}=4\Omega$ (Note)	200	300	-	mW
	Po	$V^{T}=2V$, $R_{L}=4\Omega$	·	80	-	mW
		THD=1%, f=40Hz~15kHz				
	Po	$V^+=4V, R_1=8\Omega$	<u></u> -	380		mW
Total Harmonic Distortion	THD	$V^{+}=4V, R_{L}=8\Omega, P_{O}=200 \text{mW}, f=1 \text{kHz}$	<u>-</u>	0.2	-	% .
Close Loop Voltage Gain	A_{V}	f=1kHz	41	44	47	dB
Input Impedance	Z _{IN}	f=1kHz	100	l —	-	kΩ
Equivalent Input Noise Voltage	V _{NII}	R _S =10kΩ, A Curve	<u> </u>	2		μV
	V _{NI2}	$R_S=10k\Omega$, $B=22Hz\sim22kHz$	-	2.5		μV
Ripple Rejection	RR	f=100Hz	-	40	-	dB
Cutoff Frequency	fH	$A_V = -3 dB$ from $f = 1 kHz$,	-	130	-	kHz
		$R_L = 16\Omega, P_O = 0.5W$				

(Note) At on PC Board

(2) Stereo Configuration (Test Circuit Fig. 2)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8	_	15	v
Output Voltage	$ \mathbf{v}_{o} $		_	2.7	_	v
Operating Current	Icc	$R_{1.} = \infty$	_	6	9	mA
Input Bias Current	t _B		_	100	_	nA
Output Power (Each Channel)		THD=10%, f=1kHz				
	Po	$V^+=6V$, $R_L=16\Omega$	_	240	_	mW
	Po	$V^+=5V, R_L=8\Omega$ (Note)	-	270	_	mW
	Po	$V^+=4V, R_L=4\Omega$ (Note)	180	250		mW
	Po	$V^{+}=3V$, $R_{1}=4\Omega$	-	120	_	mW
	Po	$V^+=2V, R_L=4\Omega$	_	30	<u> </u>	mW
		THD=1%, f=1kHz				
	Po	$V^{+}=4V, R_{1}=4\Omega$	-	180	_	mW
Total Harmonic Distortion	THD	$V^{+}=4V, R_{L}=4\Omega, P_{O}=150mW, f=1kHz$	-	0.25		%
Voltage Gain	A _V	f=1kHz	41	44	47	dB
Channel Balance	ΔA_{V}		-	_	±1	dΒ
nput Inpedance	Z _{IN}	f=1kHz	100	_	l —	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_S = 10k\Omega$, A Curve	-	2.5		μV
•	V _{NI2}	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$		3	l —	μV
Ripple Rejection	RR	$f=100Hz, Cx=100\mu F$	24	30		dΒ
Cutoff Frequency	f _H	$A_V = -3dB$ from $f = 1kHz$	_	200	<u> </u>	kHz
		$R_{i.} = 16\Omega, P_{O} = 125 \text{mW}$				

(Note) At on PC Board

■ TYPICAL APPLICATION & TEST CIRCUIT

Fig.1 BTL Configuration

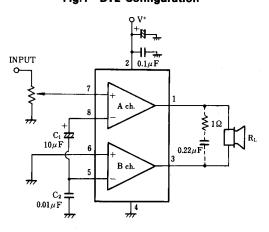
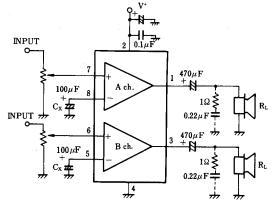
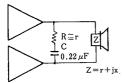



Fig.2 Stereo Configuration



note: pin No. to D,M-Type

■ PARASITIC OSCILLATION PREVENTING CIRCUIT

Put $1\Omega + 0.22\mu F$ on parallel to load, if the load is speaker. Recommend putting $0.1\mu F$ and more than $100\mu F$ capacitors with good high frequency characteristics in to near ground and supply voltage pins.

In BTL operation of less than 2V supply voltage, parasitic oscillation may be occurred with $R = 1\Omega$. And so recommended R to be the same valve of pure resistance(r) when it is lower than 3V.

■ MUTING CIRCUIT

When Mute ON, OUTPUT level saturates to GND side.

Fig.3 BTL Configuration

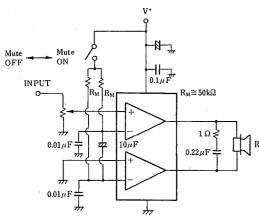
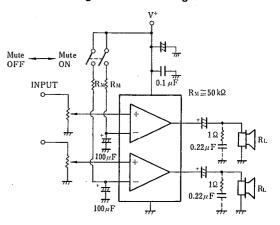
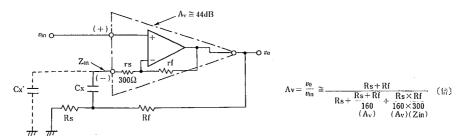



Fig.4 Stereo Configuration

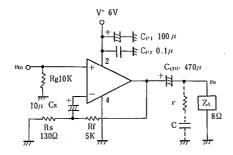

■ VOLTAGE GAIN REDUCTION APPLICATION EXAMPLE

(1) Outline of way to further Reduction

NJM2073 by taking in assamption, as one of OP-AMP (Gain 44dB, minus input impedance about 300 Ω), to feedback from output to minus input helps to get reduction of stablized voltage Gain. Fig.5 indicates the model example.

Here is the point to be noticed that, in order to get the appropriate output Bias Voltage, it is important to keep the minus input floating as DC condition, (inserting C_X), and also that when extended too much reduction of Gain might cause Oscillation due to high band phase margin. The reduction of voltage gain is limited at around 26 dB(20 times), and when oscillation, it in necessary to attach the oscillation atopper. Please examine the C_X value accordingly to the application reguirement.

Fig.5 Model of Voltage Gain Reduction

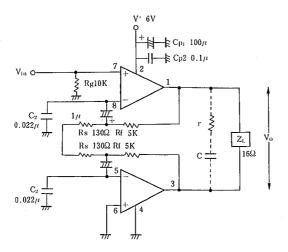


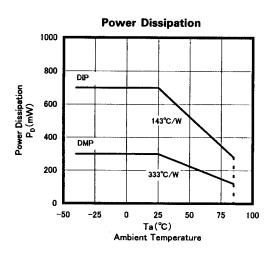
(2) The Application Example of Voltage Gain Reduction (STEREO) Fig.6 indicates the application example and Table 1 indicates the recommendable value of parts to be attached externally.

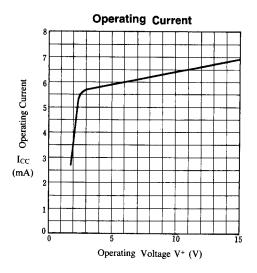
Table 1, Applicating purpose and Recommended Value of Externally parts to be attached.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
R_g	Plus input to be grounded by fixed DC	Under about 100kΩ	Catch the noise when much higher.
R_s	AV shall be decided with R _f	· —	
R _f	AV shall be decided with Rs	About 5kΩ	The co-temperature of AV becomes higher in case when Rs is higher resistance. The current from output pin to GND becomes higher, in case when Rs is lower resistance. (The current sinks in vain.)
C_X	Minus input to be grounded by fixed DC	· 	Low-band Cut off frequency (fL) is to be decided. The rise time becomes longer in case that C_X is big.
Ccup	Output DC Decoupling	When $R_L = 8\Omega$, More than 220μ F	fL shall be decided by C_{CUP} and Z_L .
C _{P1}	Stabilization of V+	More than about Ccup	Inserting near around V+ pin and GND pin.
C_{P2}	Prevention of Oscillation	More than $0.1 \mu F$	pin and or 2 spin
· r	"	About R _L	<i>y</i>
С	11	0.22μF	To be examined by about the resisitor volume of the speaker load.

Fig.6 STEREO Application Example.


• Application for Voltage Gain Reduction (BTL)


Fig.7 indicates the application example, Table 2 shows recommended value of externally attaching parts.


Table 2 Applicating purpose and Recommended Value of External Part

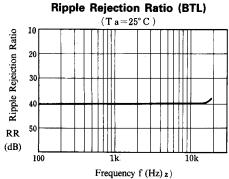
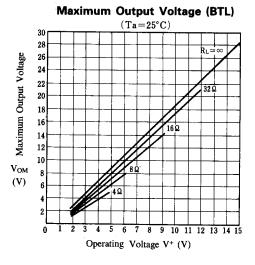
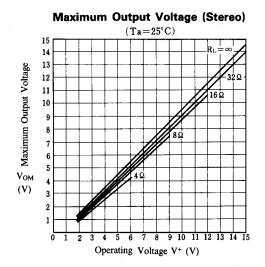
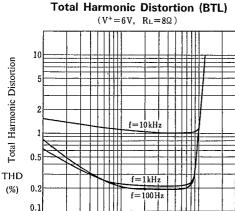
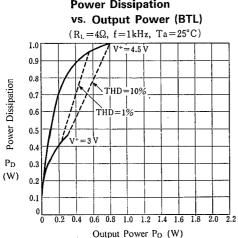

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
R_g	DC condition ground of plus input	Below about 10kΩ	Making noise when higher.
R_s	AV shall be decided with Rr		
R_f	AV shall be decided with Rs	About 5kΩ	Temperature feature to be increased accordingly as in higher AV value.
C_1	Releasing minus input in to		When lower, to be trended of Oscillation. Setting up low band Cut-off frequency (fL). More higher, the rise time become longer.
C ₂	Preventing Oscillation	About 0.02μF	The more higher in ralue, the high band THD, due to phase slippling to be deteriorated.
C_{P1}	Stability of V ⁺ Preventing Oscillation	more than about 100μ F	When lower, to be trended of oscillation. Inserting near around at V ⁺ and the GND pin.
C_{P2}	Preventing Oscillation	mote than $0.1 \mu F$	li i
r	"	About R _L	To be examined at around pure resister Value of speaker load.
C	"	0,22μF	

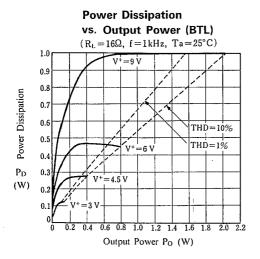
Fig.7 BTL Application

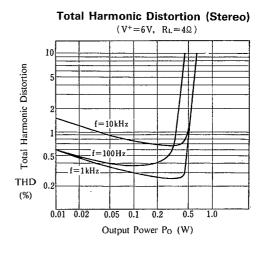


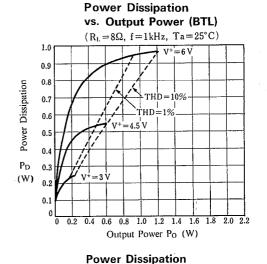


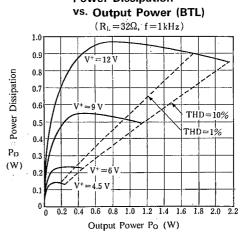


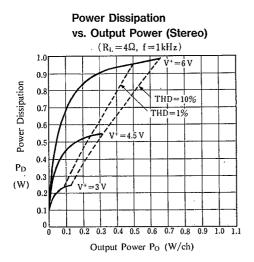


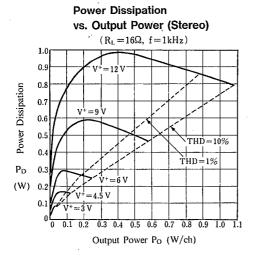


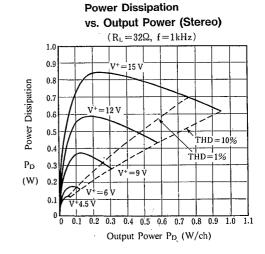


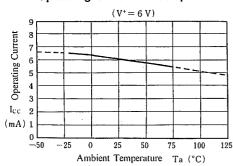



0.01 0.02 0.1 0.2 Output Power Po (W) **Power Dissipation**

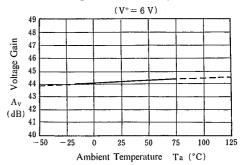


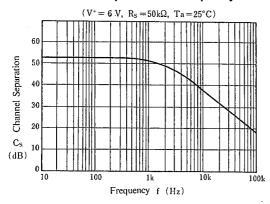





vs. Output Power (Stereo) $(R_L = 8\Omega, \ f = I \, kHz)$ $(R_L = R_L = I \, kHz)$ $(R_L = R_L = I \, kHz)$ $(R_L = I \, kHz)$

Power Dissipation




Operating Current vs. Temperature

Voltage Gain vs. Temperature

Channel Separation vs. Frequency

NJM2073

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.