
SLVS075H - APRIL 1989 - REVISED FEBRUARY 2005

- Operating Current Range
 - LM285 . . . 10 μ A to 20 mA
 - LM385 . . . 15 μ A to 20 mA
 - LM385B . . . 15 μ A to 20 mA
- 1% and 2% Initial Voltage Tolerance
- Reference Impedance
 - LM385 . . . 1 Ω Max at 25°C
 - All Devices . . . 1.5 Ω Max Over Full Temperature Range
- Very Low Power Consumption
- Applications
 - Portable Meter References
 - Portable Test Instruments
 - Battery-Operated Systems
 - Current-Loop Instrumentation
 - Panel Meters
- Interchangeable With Industry Standard LM285-1.2 and LM385-1.2

NC - No internal connection

LM285-1.2, LM385-1.2, LM385B-1.2... LP PACKAGE (TOP VIEW)

NC - No internal connection

description/ordering information

These micropower, two-terminal, band-gap voltage references operate over a 10-µA to 20-mA current range and feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming provides tight voltage tolerance. The band-gap reference for these devices has low noise and long-term stability.

ORDERING INFORMATION

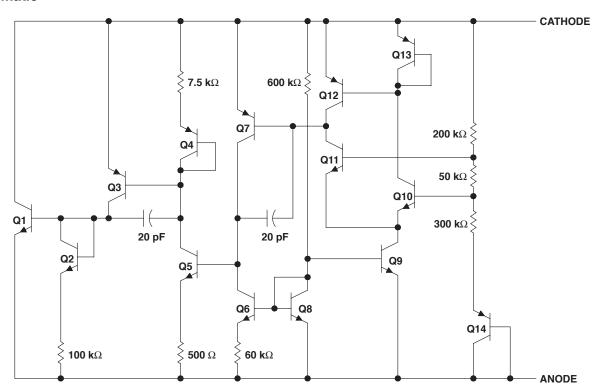
TA	V _Z TOLERANCE	PACKAG	EΤ	ORDERABLE PART NUMBER	TOP-SIDE MARKING		
		0010 (D)	Tube of 75	LM385D-1-2	005.40		
		SOIC (D)	Reel of 2000	LM385DR-1-2	385-12		
		SOP (PS)	Reel of 2000	LM385PSR-1-2	L385-12		
	2%	TO 000 (TO 00 (LD)	Tube of 1000	LM385LP-1-2	005.40		
		TO-226 / TO-92 (LP)	Reel of 2000	LM385LPR-1-2	385-12		
0°C to 70°C		T000D (DIA)	Tube of 150	LM385PW-1-2	205 10		
		TSSOP (PW)	Reel of 2000	LM385PWR-1-2	385-12		
	1%	0010 (D)	Tube of 75	LM385BD-1-2	20ED10		
		SOIC (D)	Reel of 2000	LM385BDR-1-2	385B12		
		TO 000 (TO 00 (LD)	Tube of 1000	LM385BLP-1-2	005.40		
		TO-226 / TO-92 (LP)	Reel of 2000	LM385BLPR-1-2	385-12		
		TOOOD (DIA)	Tube of 150	LM385BPW-1-2	005040		
		TSSOP (PW)	Reel of 2000	LM385BPWR-1-2	385B12		
–40°C to 85°C	1%	2010 (5)	Tube of 75	LM285D-1-2	005.40		
		SOIC (D)	Reel of 2000	LM285DR-1-2	285-12		
		TO-226 / TO-92 (LP)	Tube of 1000	LM285LP-1-2	285-12		

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS075H - APRIL 1989 - REVISED FEBRUARY 2005

description/ordering information (continued)


The design makes these devices exceptionally tolerant of capacitive loading and, thus, easier to use in most reference applications. The wide dynamic operating temperature range accommodates varying current supplies, with excellent regulation.

The extremely low power drain of this series makes them useful for micropower circuitry. These voltage references can be used to make portable meters, regulators, or general-purpose analog circuitry, with battery life approaching shelf life. The wide operating current range allows them to replace older references with tighter-tolerance parts.

symbol

schematic

NOTE A: Component values shown are nominal.

SLVS075H - APRIL 1989 - REVISED FEBRUARY 2005

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Reverse current, I _R		10 mA
Package thermal impedance, θ_{JA} (see Notes 1 and 2)	: D package	97°C/W
	LP package	140°C/W
	PS package	95°C/W
	PW package	149°C/W
Operating virtual junction temperature, T _J		150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10) seconds	260°C
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			MIN	MAX	UNIT
ΙZ	Reference current		0.01	20	mA
_	One water a five a six terms and the same	LM285-1.2	-40	85	°C
TA	Operating free-air temperature range LM385-1.2, LM385B-1.2				-0

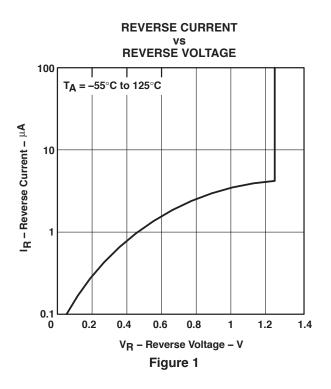
NOTES: 1. Maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. Operation at the absolute maximum T_J of 150°C can affect reliability.

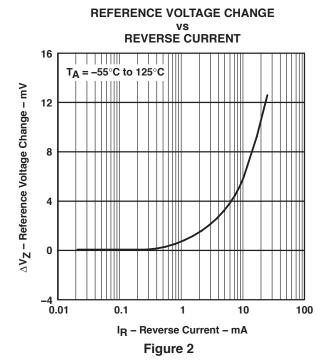
^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

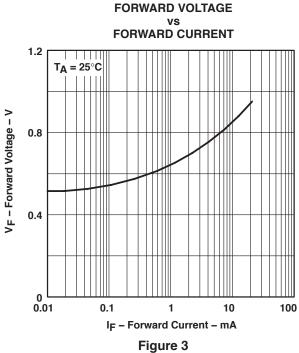
SLVS075H - APRIL 1989 - REVISED FEBRUARY 2005

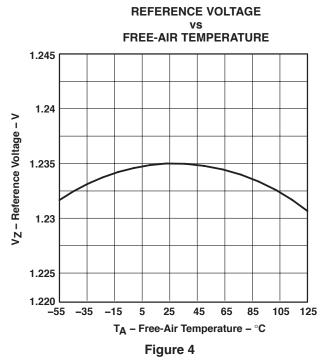
electrical characteristics at specified free-air temperature

DADAMETED		TEST		LM285-1.2			LM385-1.2			LM385B-1.2				
PAF	RAMETER	CONDITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
٧Z	Reference voltage	I _Z = I(min) to 20 mA [‡]	25°C	1.223	1.235	1.247	1.21	1.235	1.26	1.223	1.235	1.247	V	
ανΖ	Average temperature coefficient of reference voltage§	IZ = I(min) to 20 mA [‡]	Full range		±20			±20			±20		ppm/°C	
	Change in	$I_Z = I(min)$	25°C			1			1			1		
	reference	to 1 mA‡	Full range			1.5			1.5			1.5	,,	
$\Delta_{\Lambda}Z$	ΔVZ voltage with current	I _Z = 1 mA	25°C			12			20			20	mV	
		to 20 mA	Full range			30			30			30		
ΔV _Z /Δt	Long-term change in reference voltage	I _Z = 100 μA	25°C		±20			±20			±20		ppm/khr	
IZ(min)	Minimum reference current		Full range		8	10		8	15		8	15	μА	
Reference impedance		$I_Z = 100 \mu A$,	25°C		0.2	0.6		0.4	1		0.4	1		
		f = 25 Hz	Full range			1.5			1.5			1.5	Ω	
V _n	Broadband noise voltage	I _Z = 100 μA, f = 10 Hz to 10 kHz	25°C		60			60			60		μV	

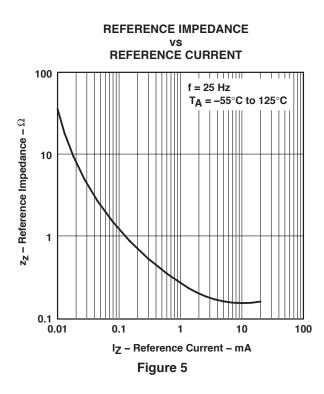

[†] Full range is –40°C to 85°C for the LM285-1.2 and 0°C to 70°C for the LM385-1.2 and LM385B-1.2.

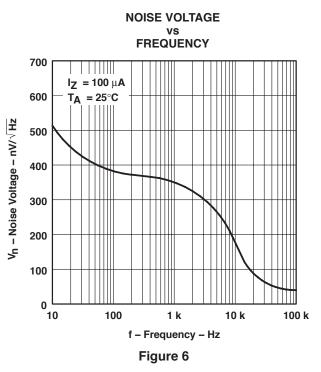

 $[\]ddagger$ I(min) = 10 μ A for the LM285-1.2 and 15 μ A for the LM385-1.2 and LM385B-1.2


[§] The average temperature coefficient of reference voltage is defined as the total change in reference voltage divided by the specified temperature


SLVS075H - APRIL 1989 - REVISED FEBRUARY 2005

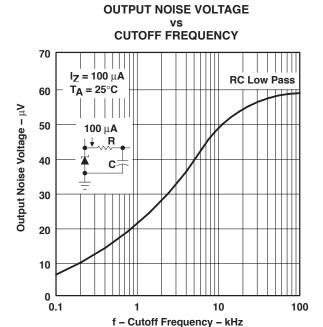
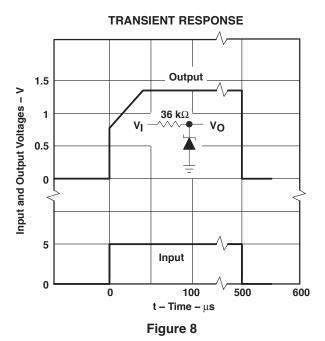
TYPICAL CHARACTERISTICS†

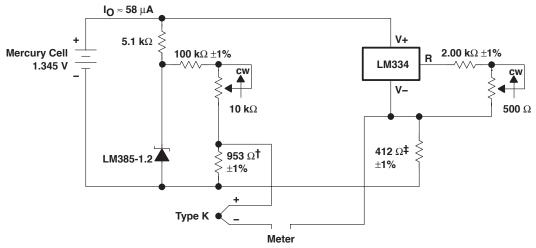




[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS†


Figure 7

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

APPLICATION INFORMATION

 $^{^{\}dagger}$ Adjust for 11.15 mV at 25°C across 953 Ω

Figure 9. Thermocouple Cold-Junction Compensator

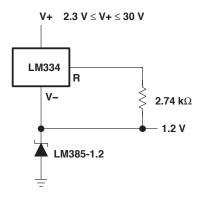


Figure 10. Operation Over a Wide Supply Range

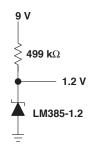


Figure 11. Reference From a 9-V Battery

 $[\]ddagger$ Adjust for 12.17 mV at 25°C across 412 Ω

17-Feb-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
LM285D-1-2	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
LM285DR-1-2	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
LM285LP-1-2	ACTIVE	TO-92	LP	3	1000	None	Call TI	Level-NC-NC-NC
LM385BD-1-2	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
LM385BDR-1-2	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
LM385BLP-1-2	ACTIVE	TO-92	LP	3	1000	None	Call TI	Level-NC-NC-NC
LM385BLPR-1-2	ACTIVE	TO-92	LP	3	2000	None	Call TI	Level-NC-NC-NC
LM385BPW-1-2	ACTIVE	TSSOP	PW	8	150	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LM385BPWR-1-2	ACTIVE	TSSOP	PW	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LM385D-1-2	ACTIVE	SOIC	D	8	75	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
LM385DR-1-2	ACTIVE	SOIC	D	8	2500	Pb-Free (RoHS)	CU NIPDAU	Level-2-250C-1 YEAR
LM385LP-1-2	ACTIVE	TO-92	LP	3	1000	None	Call TI	Level-NC-NC-NC
LM385LPR-1-2	ACTIVE	TO-92	LP	3	2000	None	Call TI	Level-NC-NC-NC
LM385PSR-1-2	ACTIVE	SO	PS	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-2-260C-1 YEAR Level-1-235C-UNLIM
LM385PW-1-2	ACTIVE	TSSOP	PW	8	150	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
LM385PWR-1-2	ACTIVE	TSSOP	PW	8	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

None: Not yet available Lead (Pb-Free).

Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,

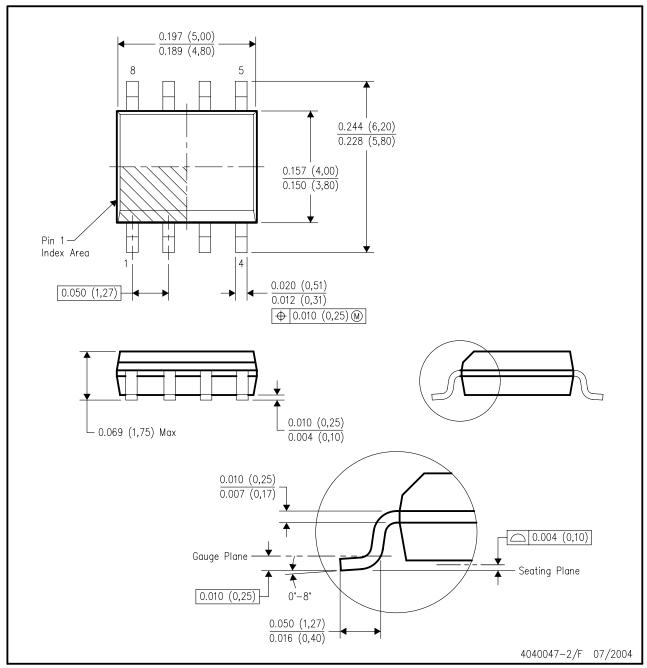
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on

⁽²⁾ Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature.

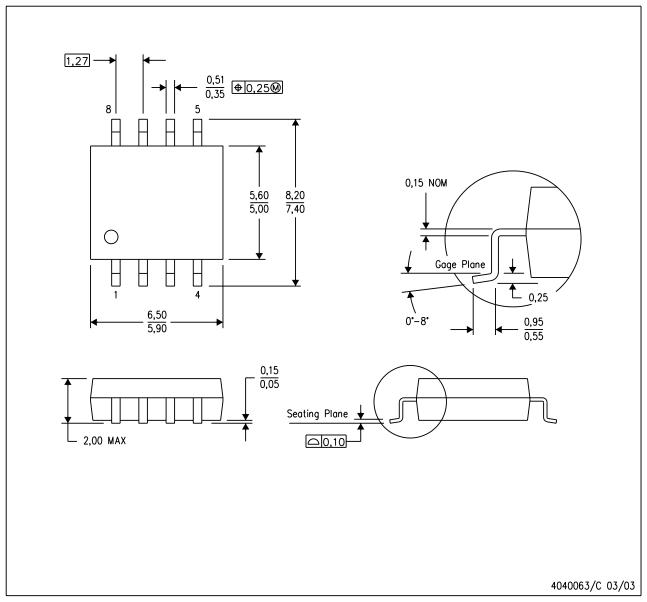
PACKAGE OPTION ADDENDUM


17-Feb-2005

incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G8)

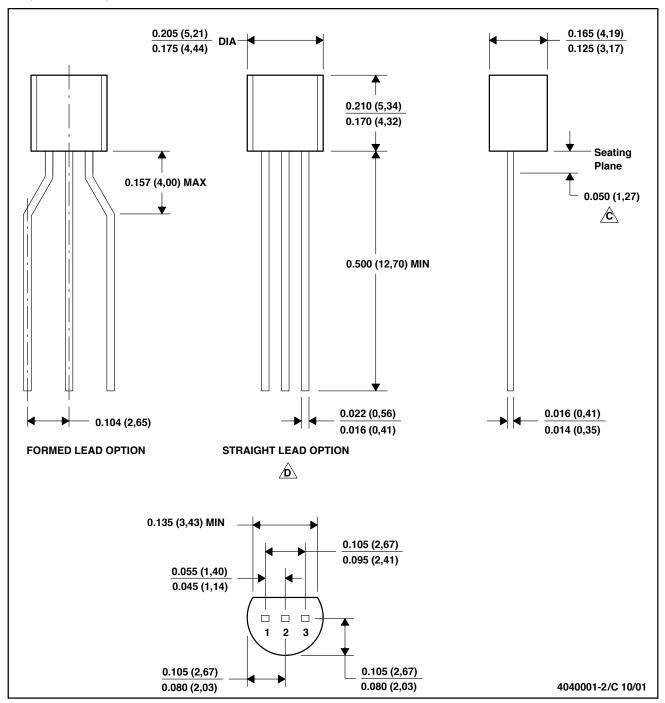

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

1

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

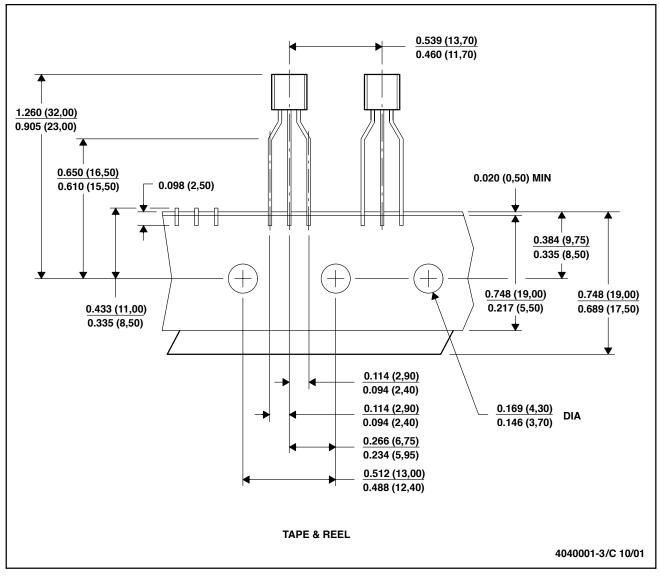
NOTES: A. All linear dimensions are in inches (millimeters).

3. This drawing is subject to change without notice.

 $\underline{\lambda}$ Lead dimensions are not controlled within this area

FAlls within JEDEC TO -226 Variation AA (TO-226 replaces TO-92)

E. Shipping Method:

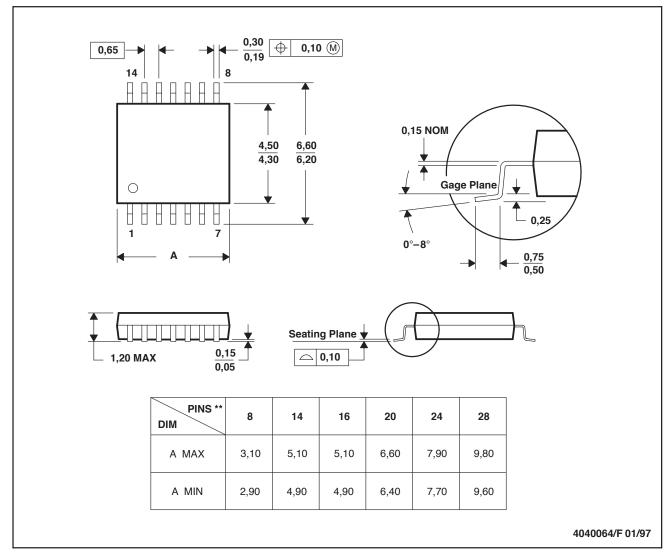

Straight lead option available in bulk pack only.

Formed lead option available in tape & reel or ammo pack.

LP (O-PBCY-W3)

PLASTIC CYLINDRICAL PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).


B. This drawing is subject to change without notice.

C. Tape and Reel information for the Format Lead Option package.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated