

SG6741 Highly Integrated Green-Mode PWM Controller

Features

High-Voltage Startup

FAIRCHILD

- Low Operating Current: 4mA
- Linearly Decreasing PWM Frequency to 22kHz
- Frequency Hopping to Reduce EMI Emission
- Peak-Current-Mode Control
- Cycle-by-Cycle Current Limiting
- Leading-Edge Blanking
- Synchronized Slope Compensation
- Gate Output Maximum Voltage Clamp: 18V
- V_{DD} Over-Voltage Protection (Auto Restart)
- V_{DD} Under-Voltage Lockout (UVLO)
- Internal Open-Loop Protection
- Constant Power Limit (Full AC Input Range)

Applications

General-purpose switch-mode power supplies and flyback power converters, including:

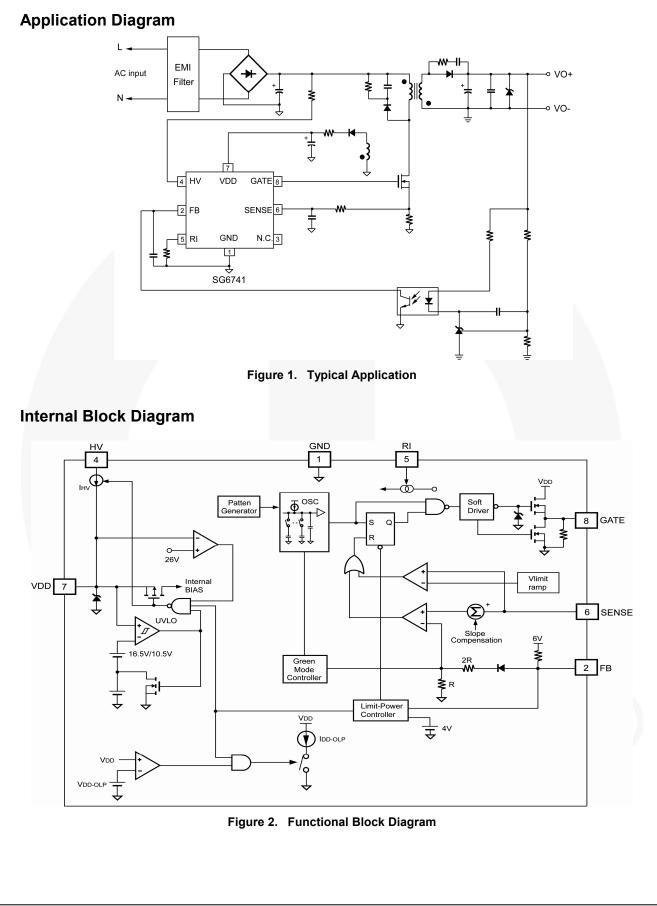
- Power Adapters
- Open-Frame SMPS

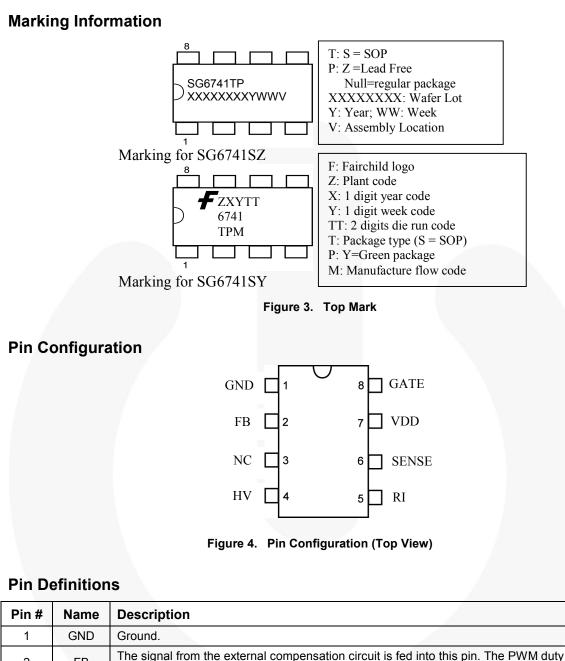
Description

The highly integrated SG6741 PWM controller provides several features to enhance the performance of flyback converters.

The highly integrated SG6741 series of PWM controllers provides several features to enhance the performance of flyback converters.

To minimize standby power consumption, a proprietary green-mode function provides off-time modulation to linearly decrease the switching frequency at light-load conditions. To avoid acoustic-noise problems, the minimum PWM frequency is set above 22KHz. This green-mode function enables the power supply to meet international power conservation requirements. With the internal high-voltage startup circuitry, the power loss due to bleeding resistors is also eliminated. To further reduce power consumption, SG6741 is manufactured using the BiCMOS process, which allows an operating current of only 4mA.


SG6741 integrates a frequency-hopping function that helps reduce EMI emission of a power supply with minimum line filters. Its built-in synchronized slope compensation achieves stable peak-current-mode control. The proprietary internal line compensation ensures constant output power limit over a wide range of AC input voltages, from $90V_{AC}$ to $264V_{AC}$.


SG6741 provides many protection functions. In addition to cycle-by-cycle current limiting, the internal open-loop protection circuit ensures safety when an open-loop or output short-circuit failure occurs. PWM output is disabled until V_{DD} drops below the UVLO lower limit; then the controller starts again. As long as V_{DD} exceeds about 26V, the internal OVP circuit is triggered.

SG6741 is available in an 8-pin SOP package.

Ordering Information

Part Number	Operating Temperature Range	Package	Packing Method
SG6741SZ	-40 to +105°C	8-Lead Small Outline Package (SOP)	Tape & Reel
SG6741SY	-40 to +105°C	8-Lead Small Outline Package (SOP)	Tape & Reel

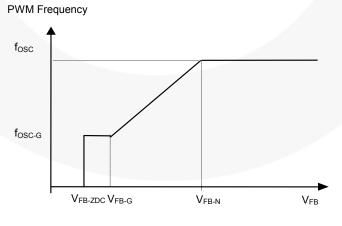
SG6741 — Highly Integrated Green-Mode PWM Controller

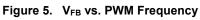
Pin #	Name	Description
1	GND	Ground.
2	FB	The signal from the external compensation circuit is fed into this pin. The PWM duty cycle is determined in response to the signal on this pin and the current-sense signal on the SENSE pin.
3	NC	No connection.
4	ΗV	For startup, this pin is pulled high to the line input or bulk capacitor via resistors.
5	RI	A resistor connected from the RI pin to GND pin provides the SG6741 with a constant current source. This determines the center PWM frequency. Increasing the resistance reduces PWM frequency. Using a $26K\Omega$ resistor (R _I) results in a $65kHz$ center PWM frequency.
6	SENSE	Current sense. The sensed voltage is used for peak-current-mode control and cycle-by-cycle current limiting.
7	VDD	Power supply. The internal protection circuit disables PWM output as long as V_{DD} exceeds the OVP trigger point.
8	GATE	The totem-pole output driver. Soft driving waveform is implemented for improved EMI.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. All voltage values, except differential voltages, are given with respect to the ground pin.

Symbol	Parameter		Min.	Max.	Unit
V_{VDD}	DC Supply Voltage ^(1, 2)			30	V
V _{FB}	FB Pin Input Voltage		-0.3	7.0	V
V_{SENSE}	SENSE Pin Input Voltage		-0.3	7.0	V
V _{RI}	RI Pin Input Voltage		-0.3	7.0	V
V_{HV}	HV Pin Input Voltage			500	V
PD	Power Dissipation (T _A <50°C)			400	mW
Θ_{JA}	Thermal Resistance (Junction-to-Air)			141	°C/W
TJ	Operating Junction Temperature		-40	+125	°C
T _{STG}	Storage Temperature Range		-55	+150	°C
TL	Lead Temperature (Wave Soldering or IR, 10 Seconds)			+260	°C
ESD	Electrostatic Discharge Capability, Human Body Model, JESD22-A114	All Pins Except HV Pin		4	kV
EOD	Electrostatic Discharge Capability, Machine Model, JESD22-A115	All Pins Except HV Pin		200	V


Notes:


1. All voltage values, except differential voltages, are given with respect to the network ground terminal.

2. Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Electric	al Characteristics					
V _{DD} =15V,	T _A =25°C, unless otherwise noted.					
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{DD} Sect	ion			1		
VOP	Continuously Operating Voltage				22	V
V _{DD-ON}	Start Threshold Voltage		15.5	16.5	17.5	V
$V_{\text{DD-OFF}}$	Minimum Operating Voltage		9.5	10.5	11.5	V
I _{DD-ST}	Startup Current	V _{DD-ON} – 0.16V			30	μA
I _{DD-OP}	Operating Supply Current	V _{DD} =15V, GATE Open		4	5	mA
I _{DD-OLP}	Internal Sink Current	V _{DD-OLP} +0.1V	50	70	90	μA
$V_{\text{TH-OLP}}$	I _{DD-OLP} off Voltage		6.5	7.5	8.0	V
$V_{\text{DD-OVP}}$	V _{DD} Over-Voltage Protection		25	26	27	V
t _{D-VDDOVP}	V _{DD} Over-Voltage Protection Debounce Time		100	180	260	μs
HV Secti	on					
I _{HV}	Supply Current from HV Pin	V_{AC} =90V (V _{DC} =120V), V _{DD} =10µF		2.0		mA
I _{HV-LC}	Leakage Current After Startup	HV=500V, V _{DD} =V _{DD-} _{OFF} +1V		1	20	μΑ
Oscillato	or Section					
		Center Frequency	62	65	68	KHz
fosc	Frequency in Nominal Mode	Hopping Range	±3.7	±4.2	±4.7	
t _{HOP}	Hopping Period			4.4		ms
f _{OSC-G}	Green-Mode Frequency		16	18	21	KHz
f _{DV}	Frequency Variation vs. V _{DD} Deviation	V _{DD} =11V to 22V			5	%
f _{DT}	Frequency Variation vs. Temperature Deviation	T _A =-40 to 105°C			5	%

Continued on the following page...

+	Delay Time for S
ID-SSCP	Protection

Current-Sense Section

Electrical Characteristics (Continued)

Parameter

Input Voltage to Current-Sense Attenuation

Delay Time of FB Pin Open-Loop Protection

V_{DD}=15V, T_A=25°C, unless otherwise noted.

Input Impedance

Input Impedance

Delay to Output

Output High Voltage

FB Open-Loop Trigger Level

Green-Mode Entry FB Voltage

Green-Mode Ending FB Voltage

Zero Duty-Cycle Input Voltage

Leading-Edge Blanking Time

Current Limit Flatten Threshold Voltage

Current Limit Valley Threshold Voltage

Symbol

 A_V Z_{FB}

 $V_{FB-OPEN}$

V_{FB-OLP}

t_{D-OLP}

 $V_{\text{FB-N}}$

 V_{FB-G}

V_{FB-ZDC}

ZSENSE

VSTHEL

VSTHVA

t_{PD}

t_{LEB}

Feedback Input Section

	V_{S-SCP}	Threshold Voltage for SENSE Short-Circuit Protection			0.15		V		
	t _{D-SSCP}	Delay Time for SENSE Short-Circuit Protection	V _{SENSE} <0.15V, R _I =26kΩ		180		μs		
GATE Section									
	DCY _{MAX}	Maximum Duty Cycle		70	75	80	%		
	V _{GATE-L}	Gate Low Voltage	V_{DD} =15V, I _O =50mA			1.5	V		
	$V_{\text{GATE-H}}$	Gate High Voltage	V _{DD} =12.5V, I _O =50mA	8			V		
	tr	Gate Rising Time	V_{DD} =15V, C _L =1nF	150	250	350	ns		
	t _f	Gate Falling Time	V_{DD} =15V, C _L =1nF	30	50	90	ns		
	I _{GATE-} SOURCE	Gate Source Current	V _{DD} =15V, GATE=6V	250			mA		
	VGATE-	Gate Output Clamping Voltage	V _{DD} =22V			18	V		

Conditions

FB Pin Open

V_{STHFL}-V_{STHVA}

 $R_l=26k\Omega$

Min.

1/3.75

4

5.5

3.7

50

1.9

V_{FB-G} ·

0.25

0.87

0.30

275

Тур.

1/3.20

4.0

56

2.1

V_{FB-N}-

0.5

V_{FB-G} -

0.20

12

0.90

0.34

100

350

Max.

1/2.75

7

4.3

62

2.3

V_{FB-G} -

0.10

0.93

0.38

200

425

Units

V/V

kΩ

V

V

ms

V

V

V

KΩ

V

V

ns

ns

CLAMP Notes:

When activated, the output is disabled and the latch is turned off. 3.

The threshold temperature for enabling the output again and resetting the latch after OTP has been activated. 4.

