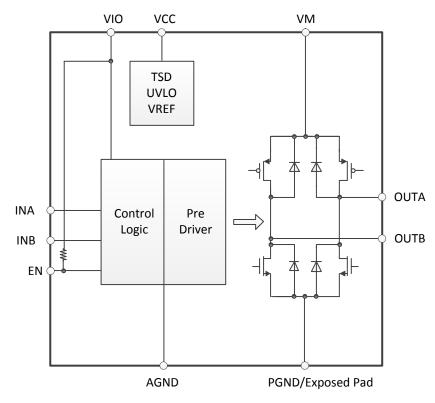


PT5126 1CH DC Motor Driver

DESCRIPTION

The PT5126 is 1 Full-On Drive H-Bridge channel with three different packages. The driver features wide range operating from 2V to 24V and low power consumption by fast switching speed.

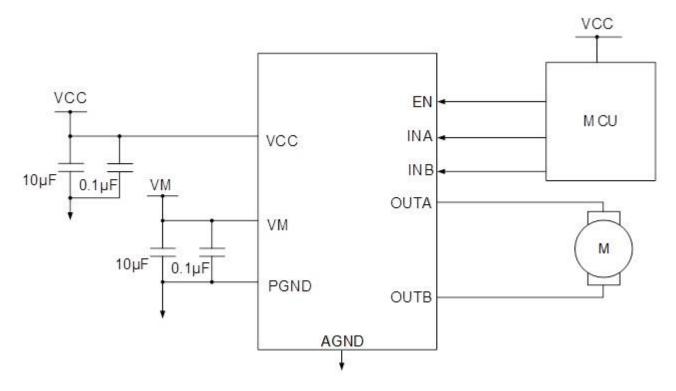

FEATURES

- It is low consumption by BCD process adoption
- One small package: HSOP8
- Wide power-supply voltage range: -Control (VCC): 2.7V to 5.5V
 Motor (VM): 2.0V~24V
- High DC output current: Max.=2.8A
- Ultra low RDSON(TOP+BOT): 0.49ΩTYP@25°C, 1A
- Low current consumption when power-down: <0.05µA @25°C

- PWM control, Max. input frequency: 200KHz
- Operating temperature range: -40 to +85°C
- Charge-pump less
- Shoot-through current protection
- Built-in protection circuits
 - Under Voltage Lock Out
 - Thermal Shut Down

APPLICATION

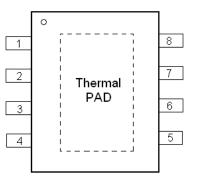
- Lens for DSLR
- Auto icemaker or dumper drive for refrigerator
- HV bi-direction DC Motor
- Intelligent electronic lock


BLOCK DIAGRAM

PT5126

APPLICATION CIRCUITS

HSOP8



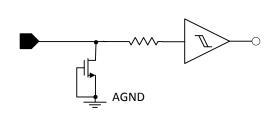
ORDER INFORMATION

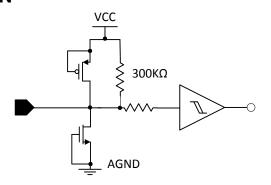
Valid Part Number	Package Type	Top Code
PT5126-HS	8 pins, HSOP	PT5126-HS

PIN CONFIGURATION

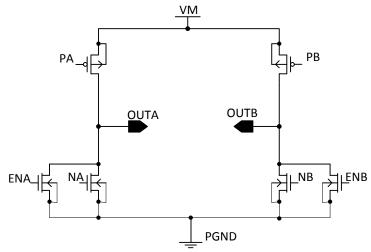
HSOP8

PIN DESCRIPTION


Pin Name	I/O	Description	Pin No.
			HSOP8
AGND	GND	Logic GND	1
VCC	Power	Power supply for Logic circuit	2
VM	Power	Power supply for driver	3
OUTA	0	H-Bridge output terminal A of the driver	4
OUTB	0	H-Bridge output terminal B of the driver	5
INA	I	Control input	6
INB	I	Control input	7
EN	I	Logic Enable [300K Ω pull up for VCC]	8
PGND	GND	Power MOS GND	Thermal PAD



INPUT/OUTPUT CONFIGURATION


INA, INB

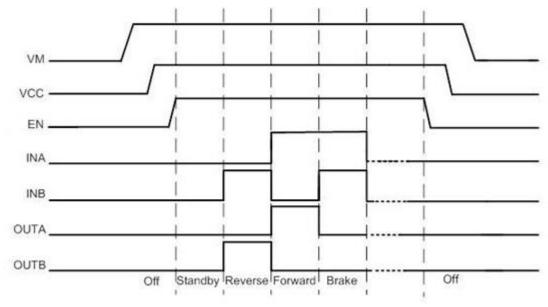
EN

OUTA, OUTB

Note:

INA=INB=H and EN=H, OUTA and OUTB are low level in brake state, here the power NMOS NA and NB are on, the enable NMOS ENA and ENB are off. The NA and NB have the ability of sink current.

INA=INB=X and EN=L, OUTA and OUTB are low level in off state, here the power NMOS NA and NB are off, the enable NMOS ENA and ENB are on. The ENA and ENB only pull down the OUTA and OUTB, and they haven't the ability of sink current.



FUNCTION TABLE

INPUT-OUTPUT LOGIC TABLE

EN	Input Signal		Output Driver		Actuator status	
EN	INA	INB	OUTA	OUTB	Actualor status	
Н	L	L	Z	Z	Standby	
Н	L	Н	L	Н	Reverse	
Н	H	L	Н	L	Forward	
Н	H	Н	L	L	Brake	
L	Х	Х	L	L	Off	

FUNCTION SEQUENCE

Note: VM & VCC power on have no timing sequence

VM & VCC power off have no timing sequence

EN power on have no timing sequence

EN power off have no timing sequence

PROTECTION FUNCTION

THERMAL SHUTDOWN (TSD) CIRCUIT

The PT5126 includes a thermal shutdown circuit, which turns the output transistors off when the junction temperature (Tj) exceeds 175°C (typ.).

The output transistors are automatically turned on when Tj cools past the shutdown threshold, which is lowered by a hysteresis of 30°C.

TSD = 175°C ΔTSD = 30°C

* In thermal shutdown mode, the circuits powered by VCC are work normal, and the circuits powered by VM are shut down.

UNDER VOLTAGE LOCKOUT (UVLO) CIRCUIT

The PT5126 includes an under voltage lockout circuit, which puts the output transistors in the high-impedance state when VCC decreases to 2.13V (typ.) or lower.

The output transistors are automatically turned on when VCC increases past the lockout threshold, which is raised to 2.21 V by a hysteresis of 0.08 V.

* In UVLO shutdown mode, a part of circuits powered by VCC are work normal, and the circuits powered by VM are shut down.

SHOOT-THROUGH CURRENT PROTECTION

During Dead Time (Shoot through current circuit is operated.), Power MOS both of HI side and Low side are turned off. But in this time, internal parasitic diode is turned on according to current direction.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit	Note
Supply voltage VCC	VCC	-0.5	6	V	-
Control input voltage	INA/INB/EN	-0.5	6	V	-
Supply voltage VM	VM	-0.5	26	V	-
H-Bridge output current DC	lload_dc_MD	-	2.8	А	-
H-Bridge output current AC	lload_peak_MD		5.0	А	Note1
Continuous power dissipation	Pd Ta=85℃	-	1083	mW	Note2
Operation temperature	Та	-40	85	°C	-
Junction temperature	Тј	-	150	°C	-
Storage temperature	Tstg	-40	150	°C	-
Minimum ESD rating(HBM)	Vesd	2000	-	V	-
Minimum ESD rating(MM)	Vesd	200	-	V	-

Notes:

1. Terminal OUTA,OUTB pulse with =<200ms :Duty 1%

2. Glass epoxy board : 4 layer circuit board, Rj=39 $^{\circ}$ C/W

EP pin is connected to GND. (EP pin has 4 thermal VIA holes.)

RECOMMENDED OPERATION CONDITIONS

Parameter	Symbol	Min	Тур.	Max	Unit
Supply voltage VCC	VCC	2.7	3.3	5.5	V
Control input voltage	INA/INB/EN	1.62	1.8/3.3	VCC	V
Supply voltage VM	VM	2	-	24	V
Logic input frequency	Fin	0	-	200	KHz
Logic input duty for frequency=200KHz (Ta=25℃, VCC=3.3V, VM=12V, Rload=50Ω)	Duty	6%	-	94%	%

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, Ta=25℃, VCC=3.3V, VM=7.4V)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
VDET						
VCC UVLO	VCDET_LV		1.90	2.13	2.50	V
TSD (Note)					•	
Thermal shut down temperature	TDET		-	175	-	°C
Hysteresis	TDETHYS		-	30	-	°C
Power supply current						
VM standby current1	IVM_NOPOW	VCC=L	-	0.005	0.05	μA
VM standby current2	IVM_STBY	EN=L	-	0.005	0.05	μA
VCC work current	IVCC_WORK	EN=H, INA=INB=L	-	110	300	μA
VCC off current	IVCC_OFF	EN=L	-	11	30	μA
Operation circuit current	IVCC_PWM	INA=200KHz, INB=H	-	0.38	0.8	mA
Driver						
Output on resistance 1 (HSD or LSD)	RON1	VCC=3.3V, Iо∪т=100mA Ta=25℃	-	0.23	0.27	Ω
Output on resistance 2 (HSD or LSD)	RON2	VCC=3.3V, louт=1.0A Ta=25℃ (Tj=65℃)	-	0.245	0.29	Ω
Output on resistance 3 (HSD or LSD)	RON3	VCC=3.3V,Iouт=1.0A Ta=85℃ (Tj=125℃)	-	0.295	0.35	Ω
Diode forward voltage	VF_MD	IF=100mA	-	0.7	1.2	V
Control terminal						
H level input voltage (INA, INB, EN)	VIH		0.7xVCC	-	-	V
L level input voltage (INA, INB, EN)	VIL		-	-	0.3xVCC	V
H level input current (INA, INB)	IIH1	EN=H or L	-	-	1	μA
L level input current (INA, INB)	IIL1	EN=H or L	-	-	1	μA
H level input current (EN)	IIH1		-	-	1	μA
L level input current (EN)	IIL1		-	11	30	μA
Full Swing						
Turn on time 1	TfONH	VCC=3.3V, VM=7.4V	-	0.42	1.0	μs
Turn off time 1	TfOFFH	lou⊤=500mA,	-	0.11	0.5	μs
Output rise time 1	Tfr	Output state: Forward→Reverse.	-	0.09	1.0	μs
Output fall time 1	Tff	Refer to Fig.1	-	0.04	0.5	μs
Turn on time 2	TrONH	VCC=3.3V, VM=7.4V	-	0.38	1.0	μs
Turn off time 2	TrOFFH	lou⊤=500mA,	-	0.11	0.5	μs
Output rise time 2	Trr	Output state: Reverse→Forward.	-	0.09	1.0	μs
Output fall time 2	Trf	Refer to Fig.1	-	0.04	0.5	μs

Note: OUTA and OUTB are Hi-Z (off state) at thermal shut down.

SWITCHING CHARACTERISTICS WAVEFORM

SWITCHING WAVEFORM

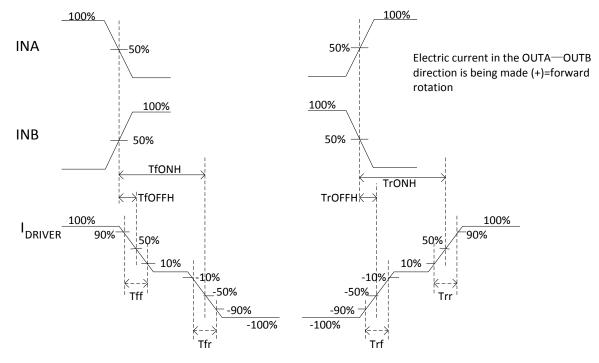
誠

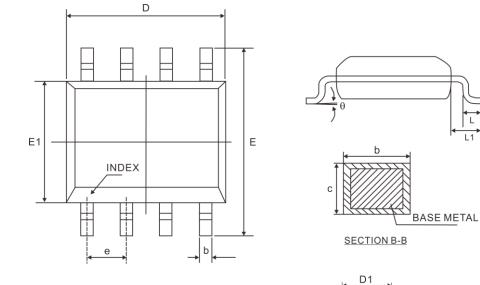
Princeton Technology Corp.

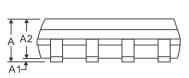
科

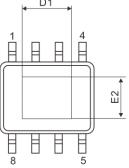
技

普




Fig.1 switching characteristics waveform




PT5126

PACKAGE INFORMATION

8-PIN, HSOP

11

Cumb al	Dimensions(mm)					
Symbol	Min.	Nom.	Max.			
A	-	-	1.70			
A1	0.00	-	0.15			
A2	1.25	-	-			
b	0.31	-	0.51			
С	0.17	-	0.25			
е		1.27 BSC				
D		4.90 BSC				
D1	3.1	3.1 3.3 3.5				
E		6.00 BSC				
E1		3.90 BSC				
E2	2.2	2.4	2.6			
L	0.40	-	1.27			
L1	1.04 REF					
θ	0°	-	8°			

Notes:

1. Refer to JEDEC MS-012 BA

2. All dimensions are in millimeter.

3. D1 and E2 refer to supplier spec. The JEDEC MS-012BA classify D1 and E2 minimum value are 1.5mm and 1.0mm.

IMPORTANT NOTICE

Princeton Technology Corporation (PTC) reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and to discontinue any product without notice at any time. PTC cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a PTC product. No circuit patent licenses are implied.

Princeton Technology Corp. 2F, 233-1, Baociao Road, Sindian Dist., New Taipei City 23145, Taiwan Tel: 886-2-66296288 Fax: 886-2-29174598 http://www.princeton.com.tw