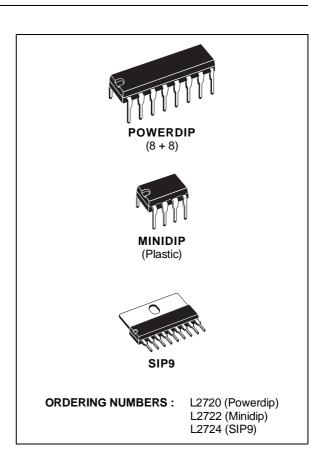
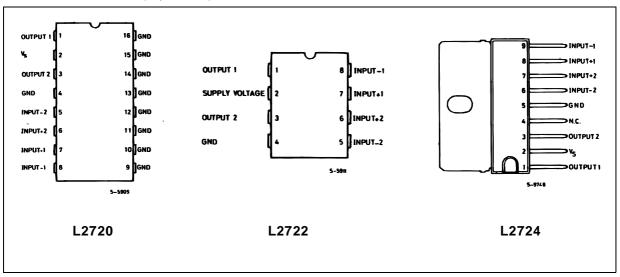


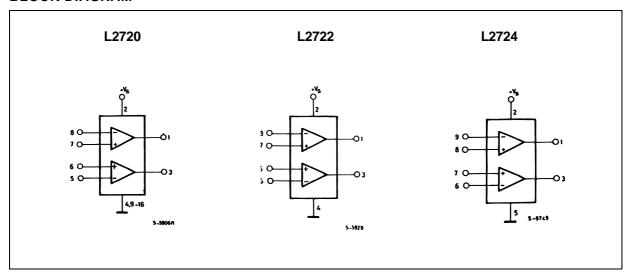
LOW DROP DUAL POWER OPERATIONAL AMPLIFIERS


- OUTPUT CURRENT TO 1 A
- OPERATES AT LOW VOLTAGES
- SINGLE OR SPLIT SUPPLY
- LARGE COMMON-MODE AND DIFFEREN-TIAL MODE RANGE
- LOW INPUT OFFSET VOLTAGE
- GROUND COMPATIBLE INPUTS
- LOW SATURATION VOLTAGE
- THERMAL SHUTDOWN
- CLAMP DIODE

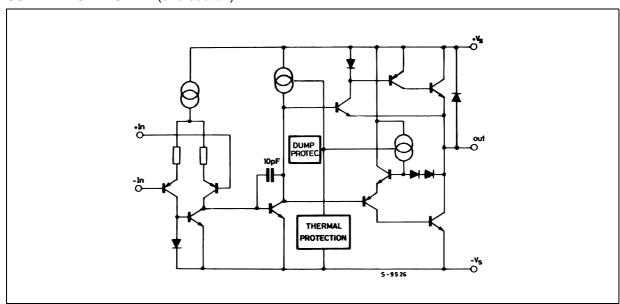

The L2720, L2722 and L2724 are monolithic integrated circuits in powerdip, minidip and SIP-9 packages, intended for use as power operational amplifiers in a wide range of applications including servo amplifiers and power supplies.

They are particularly indicated for driving, inductive loads, as motor and finds applications in compact-disc VCR automotive, etc.

The high gain and high output power capability provide superior performance whatever an operational amplifier/power booster combination is required.



PIN CONNECTIONS (top views)



November 1996 1/10

BLOCK DIAGRAM

SCHEMATIC DIAGRAM (one section)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	28	V
Vs	Peak Supply Voltage (50ms)	50	٧
V_{i}	Input Voltage	Vs	
V_{i}	Differential Input Voltage	±Vs	
Ιο	DC Output Current	1	Α
I_p	Peak Output Current (non repetitive)	1.5	Α
P _{tot}	Power Dissipation at $T_{amb} = 80^{\circ}C$ (L2720), $T_{amb} = 50^{\circ}C$ (L2722) $T_{case} = 75^{\circ}C$ (L2720) $T_{case} = 50^{\circ}C$ (L2724)	1 5 10	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

THERMAL DATA

			SIP-9	Powerdip	Minidip
R _{th j-case}	Thermal Resistance Junction-case	Max.	10°C/W	15°C/W	70°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max.	70°C/W	70°C/W	100°C/W

ELECTRICAL CHARACTERISTICS

 $V_s = 24V$, $T_{amb} = 25$ °C unless otherwise specified

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
Vs	Single Supply Voltage			4		28	V
Vs	Split Supply Voltage			± 2		± 14	V
Is	Quiescent Drain Current	$V_0 = \frac{V_s}{2}$	V _s = 24V V _s = 8V		10 9	15 15	mA
I _b	Input Bias Current		V 5 – O V		0.2	1	μА
Vos	Input Offset Voltage					10	mV
I _{os}	Input Offset Current					100	nA
SR	Slew Rate				2		V/µs
В	Gain-bandwidth Product				1.2		MHz
Ri	Input Resistance			500			kΩ
Gv	O.L. Voltage Gain	f = 100Hz f = 1kHz		70	80 60		dB
en	Input Noise Voltage	B = 22Hz to 22kHz			10		μV
I _N	Input Noise Voltage	- D = 22HZ 10 22KHZ			200		pА
CMR	Common Mode Rejection	f = 1kHz		66	84		dB
SVR	Supply Voltage Rejection	$ f = 100Hz \\ R_G = 10k\Omega \\ V_R = 0.5V $	$V_s = 24V$ $V_s = \pm 12V$ $V_s = \pm 6V$	60	70 75 80		dB
V _{DROP} (HIGH)		$V_s = \pm 2.5 V \text{ to } \pm 12 V$	$I_p = 100 \text{mA}$ $I_p = 500 \text{mA}$		0.7 1	1.5	V
V _{DROP(LOW)}		$V_s = \pm 2.5 V \text{ to } \pm 12 V$	I _p = 100mA I _p = 500mA		0.3 0.5	1	V
Cs	Channel Separation	$ f = 1 KHz \\ R_L = 10 \Omega \\ G_V = 30 dB $	V _s = 24V V _s = 6V		60 60		dB
T _{sd}	Thermal Shutdown Junction Temperature				145		°C

Figure 1: Quiescent Current vs. Supply Voltage

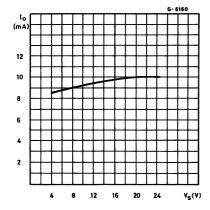
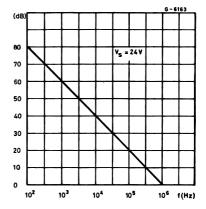



Figure 2: Open Loop Gain vs. Frequency

Figure 3 : Common Mode Rejection vs. Frequency

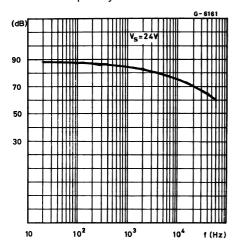
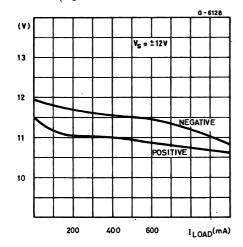



Figure 5 : Output Swing vs. Load Current ($V_S = \pm 12 \text{ V}$.

Figure 7 : Channel Separation vs. Frequency

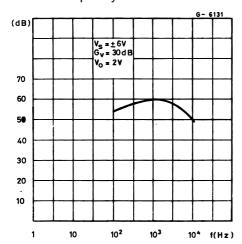
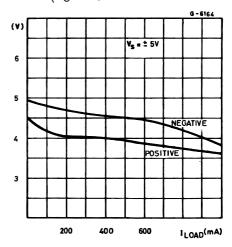
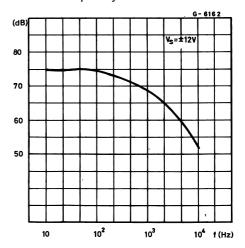




Figure 4 : Output Swing vs. Load Current $(V_S = \pm 5 V.$

Figure 6 : Supply Voltage rejection vs. Frequency

APPLICATION SUGGESTION

In order to avoid possible instability occuring into final stage the usual suggestions for the linear power stages are useful, as for instance :

- layout accuracy;
- A 100nF capacitor connected between supply pins and ground;
- boucherot cell (0.1 to 0.2 μF + 1Ω series) between outputs and ground or across the load.
 With single supply operation, a resistor (1kΩ) between the output and supply pin can be necessary for stability.

Figure 8 : Bidirectional DC Motor Control with μP Compatible Inputs

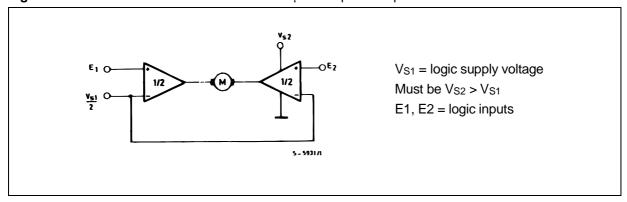


Figure 9: Servocontrol for Compact-disc

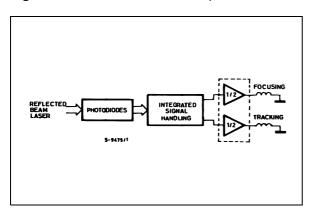


Figure 10 : Capstan Motor Control in Video Recorders

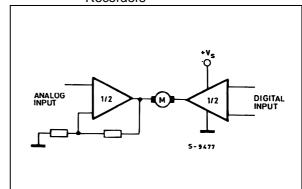


Figure 11: Motor Current Control Circuit

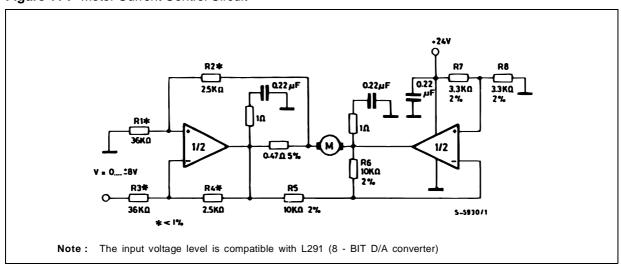


Figure 12: Bidirectional Speed Control of DC Motors

For circuit stability ensure that $R_X > \frac{2R3 \cdot R1}{RM}$ where $R_M = \text{internal resistance of motor.}$

The voltage available at the terminals of the motor is $V_M = 2$ ($V_1 - \frac{V_S}{2}$) + $|R_O|$. I_M where $|R_O| = \frac{2R3 \cdot R1}{R_X}$ and I_M is the motor current.

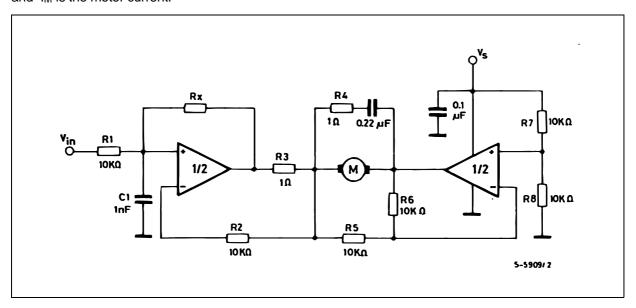
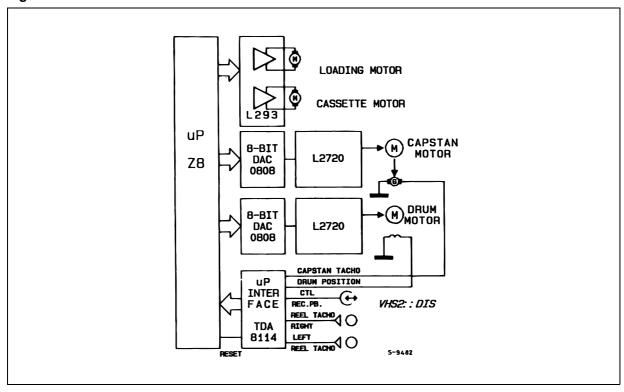
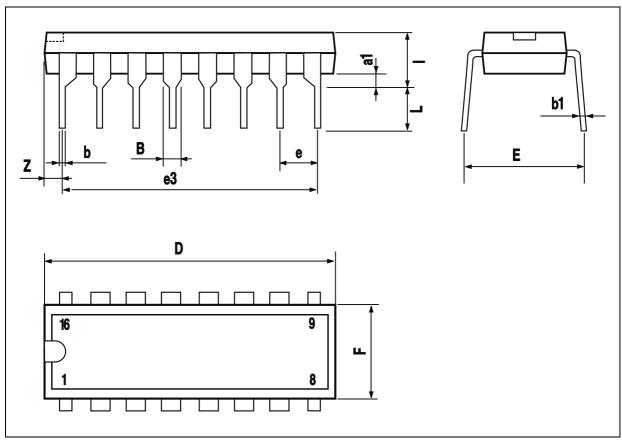
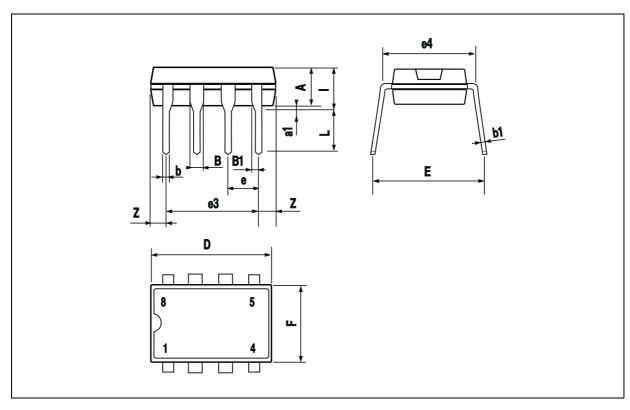
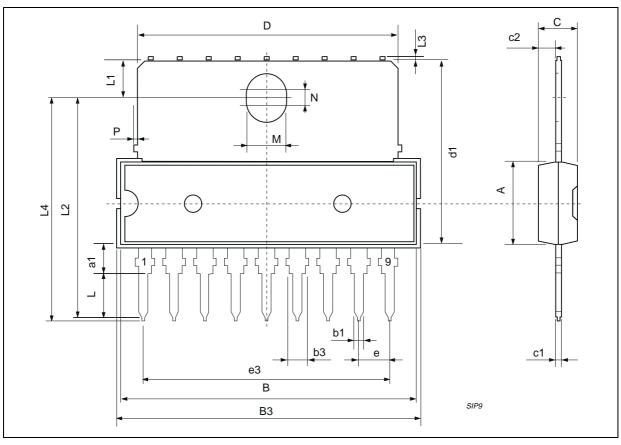




Figure 13: VHS-VCR Motor Control Circuit


POWERDIP 16 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.85		1.40	0.033		0.055
b		0.50			0.020	
b1	0.38		0.50	0.015		0.020
D			20.0			0.787
Е		8.80			0.346	
е		2.54			0.100	
e3		17.78			0.700	
F			7.10			0.280
l			5.10			0.201
L		3.30			0.130	
Z			1.27			0.050


MINIDIP PACKAGE MECHANICAL DATA

DIM.		mm		inch		
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
Е		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.280
I			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

SIP9 PACKAGE MECHANICAL DATA

DIM.	mm			inch			
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			7.1			0.280	
a1	2.7		3	0.106		0.118	
В			23			0.90	
B3			24.8			0.976	
b1		0.5			0.020		
b3	0.85		1.6	0.033		0.063	
С		3.3			0.130		
c1		0.43			0.017		
c2		1.32			0.052		
D			21.2			0.835	
d1		14.5			0.571		
е		2.54			0.100		
e3		20.32			0.800		
L	3.1			0.122			
L1		3			0.118		
L2		17.6			0.693		
L3			0.25			0.010	
L4	17.4		17.85	0.685		0,702	
М		3.2			0.126		
N		1			0.039		
Р			0.15			0.006	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

